Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 14: 264-272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36926592

RESUMO

Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of ß-amyloid (Aß) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aß and GFAP in the hippocampus and that treatment with melatonin reduces Aß levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.

2.
Neurol Res ; 40(1): 68-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29126372

RESUMO

OBJECTIVES: Functional electrical stimulation (FES) may induce involuntary exercise and make beneficial effects on vascular dementia (VD) by strengthening the BDNF-pCREB-mediated pathway and hippocampal plasticity. Whether FES improves recognition memory and synaptic plasticity in the prefrontal cortex (PFC) was investigated by establishing a VD model. METHODS: The VD rats were administered with two weeks of voluntary exercise, forced exercise, or involuntary exercise induced with FES. Sham-operated and control groups were also included. The behavioral changes were assessed with the novel object recognition test and novel object location test. The expression levels of key proteins related to synaptic plasticity in the PFC were also detected. RESULTS: All types of exercise improved the rats' novel object recognition index, but only voluntary exercise and involuntary exercise induced with FES improved the novel object location index. Any sort of exercise enhanced the expression of key proteins in the PFC. CONCLUSION: Involuntary exercise induced with FES can improve recognition memory in VD better than forced exercise. The mechanism is associated with increased synaptic plasticity in the PFC. FES may be a useful alternative tool for cognitive rehabilitation.


Assuntos
Demência Vascular , Transtornos da Memória/etiologia , Transtornos da Memória/reabilitação , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/métodos , Córtex Pré-Frontal/patologia , Reconhecimento Psicológico/fisiologia , Animais , Demência Vascular/complicações , Demência Vascular/patologia , Demência Vascular/reabilitação , Modelos Animais de Doenças , Comportamento Exploratório , Regulação da Expressão Gênica/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar
3.
Pharmacol Biochem Behav ; 144: 45-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26946254

RESUMO

AC-3933, a novel benzodiazepine receptor partial inverse agonist, is a drug candidate for cognitive disorders including Alzheimer's disease. We have previously reported that AC-3933 enhances acetylcholine release in the rat hippocampus and ameliorates scopolamine-induced memory impairment and age-related cognitive decline in both rats and mice. In this study, we further evaluated the procognitive effect of AC-3933 on memory impairment induced by MK-801, an N-methyl-d-aspartate receptor antagonist, in mice. Unlike the acetylcholinesterase inhibitor donepezil and the benzodiazepine receptor inverse agonist FG-7142, oral administration of AC-3933 significantly ameliorated MK-801-induced memory impairment in the Y-maze test and in the object location test. Interestingly, the procognitive effects of AC-3933 on MK-801-induced memory impairment were not affected by the benzodiazepine receptor antagonist flumazenil, although this was not the case for the beneficial effects of AC-3933 on scopolamine-induced memory deficit. Moreover, the onset of AC-3933 ameliorating effect on scopolamine- or MK-801-induced memory impairment was different in the Y-maze test. Taken together, these results indicate that AC-3933 improves memory deficits caused by both cholinergic and glutamatergic hypofunction and suggest that the ameliorating effect of AC-3933 on MK-801-induced memory impairment is mediated by a mechanism other than inverse activation of the benzodiazepine receptor.


Assuntos
Amnésia/psicologia , Modelos Animais de Doenças , Maleato de Dizocilpina/administração & dosagem , Memória/efeitos dos fármacos , Naftiridinas/farmacologia , Oxidiazóis/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Animais , Masculino , Aprendizagem em Labirinto , Camundongos
4.
Turk J Med Sci ; 46(6): 1915-1925, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28081348

RESUMO

BACKGROUND/AIM: The basolateral amygdala (BLA) modulates memory for emotional events and is involved in both stress and memory. This study investigated different durations of stress and the role of BLA on serum corticosterone level and spatial and cognitive memory. MATERIALS AND METHODS: Different durations of stress (acute, mid, and chronic stress), with and without BLA lesion were induced in rats by 6 h/day restraint stress for 1, 7, and 21 days. Memory functions were evaluated by novel object recognition (NOR) and object location test (OLT). RESULTS: The OLT findings showed locomotor activity and spatial memory slightly decreased with different durations of stress. The NOR findings significantly showed locomotor activity impairment in different durations of stress. Cognitive memory deficit was observed in mid stress. The corticosterone level significantly increased in the mid and chronic stress groups. Moreover, the mid stress was the strongest stress condition. There is a possibility that different stress durations act by different mechanisms. The recognition of a novel location decreased in all lesion groups. It was more severe in the NOR. The BLA lesion significantly decreased corticosterone level in the mid and chronic stress groups compared to similar groups without lesion. CONCLUSION: The BLA lesion caused more damage to cognitive than spatial memory in stressed groups.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Memória , Tonsila do Cerebelo , Animais , Corticosterona , Masculino , Transtornos da Memória , Ratos , Estresse Psicológico
5.
Physiol Behav ; 140: 79-88, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25496978

RESUMO

The forced swim test (FST) is widely used to evaluate the antidepressant-like activity of compounds and is sensitive to stimuli that cause depression-like behaviors in rodents. The immobility behavior observed during the test has been considered to represent behavioral despair. In addition, some studies suggest that the FST impairs rats' performance on cognitive tests, but these findings have rarely been explored. Thus, we investigated the effects of the FST on behavioral tests related to neuropsychiatric diseases that involve different cognitive components: novel object recognition (NOR), the object location test (OLT) and prepulse inhibition (PPI). Brain-derived neurotrophic factor (BDNF) levels in the frontal cortex and hippocampus were evaluated. The rats were forced to swim twice (15-min session followed by a 5-min session 24h later) and underwent cognitive tests 24h after the last swimming exposure. The FST impaired the rats' performance on the OLT and reduced the PPI and acoustic startle responses, whereas the NOR was not affected. The cognitive impairments were not correlated with an immobility behavior profile, but a significant negative correlation between the frontal BDNF levels and immobility behavior was identified. These findings suggest a protective role of BDNF against behavioral despair and demonstrate a deleterious effect of the FST on spatial memory and pre-attentive processes, which point to the FST as a tool to induce cognitive impairments analogous to those observed in depression and in other neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Reação de Congelamento Cataléptica/fisiologia , Lobo Frontal/metabolismo , Estresse Fisiológico , Natação/psicologia , Estimulação Acústica , Acústica , Análise de Variância , Animais , Comportamento Exploratório/fisiologia , Masculino , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Wistar , Reconhecimento Psicológico , Estatística como Assunto , Fatores de Tempo
6.
Front Behav Neurosci ; 8: 78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24659961

RESUMO

Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory impairments as well as mood dysfunction in a rat model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA