Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Cell Biochem Biophys ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150675

RESUMO

Dental pulp stem cells (DPSCs) are a class of cells with the potential of self-replication and multi-directional differentiation, which are widely considered to have great application value. It was to investigate miR-586 in DPSCs differentiated into odontoblast-like cells. In this article, human dental pulp stem cells (hDPSCs) were used as samples, and hDPSCs were co-cultured with endothelial progenitor cells (EPCs). Furthermore, a lentiviral expression vector for the miR-586 inhibitor was established. The effect of miR-586 inhibitor expression vector on the activity of hDPSCs was detected by Cell Counting Kit-8 (CCK-8). The differentiation of hDPSCs was tested by mineralized nodule staining. The expression of miR-586 and a gene related to dental cell differentiation in the pulp was subjected to detection by real-time quantitative PCR (qRT-PCR). As against the normal hDPSCs and the empty vector, the miR-586 lentivirus expression inhibition vector could visibly raise the expression of dentin sialophosphoprotein (DSPP) in hDPSCs; and the cell proliferation activity was visibly enhanced; In addition, the mRNA expressions of dentin-matrix acidic phosphoprotein 1 (DMP-1) and alkaline phosphatase (ALP) were visibly raised in the miR-586 lentivirus expression inhibition vector (all P < 0.05). Additionally, ALP activity was significantly enhanced (P < 0.05). The number of mineralized nodules was significantly increased (P < 0.05). MiR-586 plays a key regulatory function in DPSCs differentiated into odontoblast-like cells and is associated with specific molecular mechanisms.

2.
Biomolecules ; 14(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39199319

RESUMO

Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. Briefly, the upper right first molars of three-week-old mice were extracted, immersed in Type A (D35) or B (K3) CpG-ODN solutions (0.1 or 0.8 mM) for 30 min, and then replanted. Pulpal healing and immunomodulatory activity were assessed by hematoxylin-eosin and AZAN staining, as well as immunohistochemistry. One week following the operation, inflammatory reactions occurred in all of the experimental groups; however, re-revascularization and newly formed hard tissue deposition were observed in the pulp chamber of all groups at week 2. A positive trend in the expression of immune cell markers was observed toward the CpG-ODN groups at 0.1 mM. Our data suggest that synthetic CpG-ODN solutions at low concentrations may evoke a long-lasting macrophage-TLR9-mediated pro-inflammatory, rather than anti-inflammatory, response in the dental pulp to modulate the repair process and hard tissue formation. Further studies are needed to determine the effects of current immunomodulatory agents in vitro and in vivo and develop treatment strategies for dental tissue regeneration.


Assuntos
Polpa Dentária , Oligodesoxirribonucleotídeos , Receptor Toll-Like 9 , Animais , Camundongos , Oligodesoxirribonucleotídeos/farmacologia , Receptor Toll-Like 9/metabolismo , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/citologia , Ligantes , Cicatrização/efeitos dos fármacos , Masculino , Imunomodulação/efeitos dos fármacos
3.
Int J Stem Cells ; 17(3): 330-336, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38993099

RESUMO

Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and in situ development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.

4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928274

RESUMO

Epigenetic modulation, including histone modification, alters gene expression and controls cell fate. Histone deacetylases (HDACs) are identified as important regulators of dental pulp cell (DPC) mineralisation processes. Currently, there is a paucity of information regarding the nature of histone modification and HDAC expression in the dentine-pulp complex during dentinogenesis. The aim of this study was to investigate post-translational histone modulation and HDAC expression during DPC mineralisation and the expression of Class I/II HDACs during tooth development and in adult teeth. HDAC expression (isoforms -1 to -6) was analysed in mineralising primary rat DPCs using qRT-PCR and Western blot with mass spectrometry being used to analyse post-translational histone modifications. Maxillary molar teeth from postnatal and adult rats were analysed using immunohistochemical (IHC) staining for HDACs (1-6). HDAC-1, -2, and -4 protein expression increased until days 7 and 11, but decreased at days 14 and 21, while other HDAC expression increased continuously for 21 days. The Class II mineralisation-associated HDAC-4 was strongly expressed in postnatal sample odontoblasts and DPCs, but weakly in adult teeth, while other Class II HDACs (-5, -6) were relatively strongly expressed in postnatal DPCs and adult odontoblasts. Among Class I HDACs, HDAC-1 showed high expression in postnatal teeth, notably in ameloblasts and odontoblasts. HDAC-2 and -3 had extremely low expression in the rat dentine-pulp complex. Significant increases in acetylation were noted during DPC mineralisation processes, while trimethylation H3K9 and H3K27 marks decreased, and the HDAC-inhibitor suberoylanilide hydroxamic acid (SAHA) enhanced H3K27me3. These results highlight a dynamic alteration in histone acetylation during mineralisation and indicate the relevance of Class II HDAC expression in tooth development and regenerative processes.


Assuntos
Polpa Dentária , Dentina , Dentinogênese , Histona Desacetilases , Animais , Acetilação , Ratos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Dentina/metabolismo , Polpa Dentária/metabolismo , Polpa Dentária/citologia , Polpa Dentária/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Dente Molar/metabolismo , Dente Molar/crescimento & desenvolvimento , Odontoblastos/metabolismo , Masculino
5.
J Dent Res ; 103(9): 889-898, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38910430

RESUMO

Located at the interface of the dentin-pulp complex, the odontoblasts are specialized cells responsible for dentin synthesis and nociceptive signal detection in response to external stimuli. Recent studies have shown that the mechanosensitive ion channel PIEZO1 is involved in bone formation and remodeling through the influx of calcium ions, and it is abundantly expressed in odontoblasts. However, the specific role of PIEZO1 in reactionary dentinogenesis and the underlying mechanisms remain elusive. In this study, we found intense PIEZO1 expression in the plasma membrane and cytoplasm of odontoblasts in healthy human third molars, mouse mandibular molars, and human odontoblast-like cells (hOBLCs). In hOBLCs, PIEZO1 positively regulated DSPP, DMP1, and COL1A1 expression through the Ca2+/PI3K-Akt/SEMA3A signaling pathway. In addition, exogenous SEMA3A supplementation effectively reversed reduced mineralization capacity in PIEZO1-knockdown hOBLCs. In vivo, Piezo1 expression peaked at day 7 and returned to baseline at day 21 in a wild-type mice dentin injury model, with Sema3a presenting a similar expression pattern. To investigate the specific role of PIEZO1 in odontoblast-mediated reactionary dentinogenesis, mice with a conditional knockout of Piezo1 in odontoblasts were generated, and no significant differences in teeth phenotypes were observed between the control and conditional knockout (cKO) mice. Nevertheless, cKO mice exhibited reduced reactionary dentin formation and decreased Sema3a and Dsp positive staining after dentin injury, indicating impaired dental pulp repair by odontoblasts. In summary, these findings suggest that PIEZO1 enhances the mineralization capacity of hOBLCs in vitro via the Ca2+/PI3K-Akt/SEMA3A signaling pathway and contributes to reactionary dentinogenesis in vivo.


Assuntos
Dentinogênese , Canais Iônicos , Odontoblastos , Semaforina-3A , Odontoblastos/metabolismo , Animais , Camundongos , Canais Iônicos/metabolismo , Humanos , Dentinogênese/fisiologia , Semaforina-3A/metabolismo , Transdução de Sinais/fisiologia , Dente Serotino
6.
Saudi Dent J ; 36(6): 894-898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883894

RESUMO

Despite that, the odontoblasts of the dental pulp are considered a terminally differentiated type of cell. We were interested in investigating if they express any embryonic, mesenchymal, or neural stem cell markers, along with other differentiation markers they were reported to express previously. Methods: An immunohistochemistry study was performed on wisdom teeth extracted from healthy donors aged between 17 and 19 for dental reasons. Nine markers were tested: c-Myc, SOX2, MCAM, CD73, NCAM1, STRO1, osteocalcin, S100, and Thy1. Results: Odontoblasts expressed the following markers: embryonic stem cell markers SOX2, c-Myc, mesenchymal stem cell marker MCAM, the neural differentiation marker S100, and the osteogenic differentiation marker osteocalcin. Odontoblasts did not express the following markers: mesenchymal stem cell markers CD73, STRO1, Thy1, and neural stem cell marker NCAM1. Conclusion: These findings suggest that odontoblasts' expression of these stem cell markers may enable them to dedifferentiate under certain conditions. Further investigation is needed into whether dental materials could induce such dedifferentiation for functional dentin regeneration.

7.
Biomed Rep ; 21(2): 115, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38912169

RESUMO

At low medically-relevant concentrations, ozone serves as an oxidant with a wide spectrum of antimicrobial activity and the ability to promote healing and reduce inflammation. Despite providing therapeutic benefits in a range of diseases, certain adverse effects and contraindications of ozone treatment must be considered. These are primarily related to toxicity from inhalation and systemic types of administration and can be avoided by following relevant guidelines and recommendations. Ozone therapy has been implemented in a number of fields of dentistry and the most commonly used formulations for the oral cavity are gaseous ozone, ozonized water and ozonized oil. The biological mechanisms underlying the molecular effects of ozone have been increasingly reported, but currently remain largely unknown. The aim of the present review was to provide an overview of the mechanisms involved in ozone interaction with dental tissues. The present review focused on relevant evidence regarding the effect of ozone on dental tissues, including periodontal structures, dental cells, enamel and dentine, considering in vitro studies in addition to animal and human studies. A variety of biological mechanisms acting through multiple biochemical target pathways were reported to be responsible for the therapeutic effects of ozone. The main beneficial effects of ozone occurred in the following domains: antimicrobial activity, remineralization and microstructural changes of hard dental tissues, immunomodulation and biostimulation of dental and periodontal cells. Additional research could provide further insights into the use of ozone, increase its use for broader clinical applications and assist in the selection of targeted protocols.

8.
Life Sci ; 352: 122797, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917871

RESUMO

Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.


Assuntos
Homeostase , Mitocôndrias , Odontoblastos , Odontoblastos/metabolismo , Odontoblastos/fisiologia , Humanos , Homeostase/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Cárie Dentária/patologia , Cárie Dentária/metabolismo , Diferenciação Celular , Pulpite/metabolismo , Pulpite/patologia
9.
Dent Mater ; 40(8): 1259-1266, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871524

RESUMO

OBJECTIVES: To investigate the transdentinal effects of surface reaction-type pre-reacted glass-ionomer (S-PRG) fillers on odontoblast-like cells. METHODS: An eluate of S-PRG fillers was obtained by dissolving the particles in distilled water (1:1 m/v). Dentin discs with similar permeability were mounted into artificial pulp chambers and MDPC-23 cells were seeded on their pulpal surface. The occlusal surface was treated with (n = 10): ultrapure water (negative control - NC), hydrogen peroxide (positive control - PC), S-PRG eluate exposure for 1 min (S-PRG 1 min), or S-PRG filler eluate exposure for 30 min (S-PRG 30 min). After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extract obtained from transdentinal diffusion was applied to MDPC-23 pre-cultured in plates for another 24 h to evaluate viability (alamarBlue, 1, 3, and 7 days), gene expression of Col1a1, Alpl, Dspp, and Dmp1 (RT-qPCR, 1 and 7 days), and mineralization (Alizarin Red, 7 days). Data were analyzed with ANOVA (α = 5 %). RESULTS: While S-PRG 1 min did not differ from NC, S-PRG 30 min reduced 17.9 % viability of cells from discs. S-PRG treatments resulted in low cell detaching from dentin, and the remaining cells exhibited typical morphology or minor cytoplasmic contraction. S-PRG 30 min slightly increased cell viability (6 %) 1 day after contact with the extract. S-PRG treatments upregulated the expression of the investigated genes, especially after 1 day. S-PRG 30 min stimulated mineralization activity by 39.7 %. CONCLUSIONS: S-PRG filler eluate does not cause transdentinal cytotoxicity on odontoblast-like cells, and long-term exposure can stimulate their dentinogenic-related mineralization activity. SIGNIFICANCE: The transdentinal elution of ions from S-PRG fillers is not expected to be harmful to the dental pulp and may exert bioactive effects by inducing dentin matrix deposition through the metabolism of underlying odontoblasts.


Assuntos
Sobrevivência Celular , Dentina , Odontoblastos , Odontoblastos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dentina/efeitos dos fármacos , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/toxicidade , Animais , Microscopia Eletrônica de Varredura , Teste de Materiais , Propriedades de Superfície , Camundongos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Resinas Acrílicas , Dióxido de Silício
10.
J Mech Behav Biomed Mater ; 153: 106497, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458078

RESUMO

OBJECTIVE: To evaluate whether coating enamel with a polymeric primer (PPol) containing titanium tetrafluoride (TiF4) before applying a bleaching gel with 35% H2O2 (35% BG) increases esthetic efficacy, prevents changes in morphology and hardness of enamel, as well as reduces the cytotoxicity from conventional in-office bleaching. MATERIALS AND METHODS: Standardized enamel/dentin discs were stained and bleached for 45 min (one session) with 35% BG. Groups 2TiF4, 6TiF4, and 10TiF4 received the gel on the enamel previously coated with PPol containing 2 mg/mL, 6 mg/mL, or 10 mg/mL, respectively. No treatment or application of 35% BG directly on enamel were used as negative control (NC), and positive control (PC), respectively. UV-reflectance spectrophotometry (CIE L*a*b* system, ΔE00, and ΔWI, n = 8) determined the bleaching efficacy of treatments. Enamel microhardness (Knoop, n = 8), morphology, and composition (SEM/EDS, n = 4) were also evaluated. Enamel/dentin discs adapted to artificial pulp chambers (n = 8) were used for trans-amelodentinal cytotoxicity tests. Following the treatments, the extracts (culture medium + bleaching gel components diffused through the discs) were collected and applied to odontoblast-like MDPC-23 cells, which were assessed concerning their viability (alamarBlue, n = 8; Live/Dead, n = 4), oxidative stress (n = 8), and morphology (SEM). The amount of H2O2 in the extracts was also determined (leuco crystal violet/peroxidase, n = 8). The numerical data underwent one-criterion variance analysis (one-way ANOVA), followed by Tukey's test, at a 5% significance level. RESULTS: Regarding the ΔE00, no difference was observed among groups 2TiF4, 6TiF4, and PC (p > 0.05). The ΔWI was similar between groups 2TiF4 and PC (p > 0.05). The ΔWI of group 6TiF4 was superior to PC (p < 0.05), and group 10TiF4 achieved the highest ΔE00 and ΔWI values (p < 0.05). Besides limiting enamel microstructural changes compared to PC, group 10TiF4 significantly increased the hardness of this mineralized dental tissue. The highest cellular viability occurred in 10TiF4 compared to the other bleached groups (p < 0.05). Trans-amelodentinal H2O2 diffusion decreased in groups 2TiF4, 6TiF4, and 10TiF4 in comparison with PC (p < 0.05). CONCLUSION: Coating enamel with a PPol containing TiF4 before applying a 35% BG may increase enamel microhardness and esthetic efficacy and reduce the trans-amelodentinal cytotoxicity of conventional in-office tooth bleaching. The PPol containing 10 mg/mL of TiF4 promoted the best outcomes.


Assuntos
Clareadores Dentários , Clareamento Dental , Peróxido de Hidrogênio/química , Clareadores Dentários/farmacologia , Dentina , Clareamento Dental/efeitos adversos , Esmalte Dentário
11.
Cells ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38391961

RESUMO

Regenerative endodontic procedures (REPs) are promising for dental pulp tissue regeneration; however, their application in permanent teeth remains challenging. We assessed the potential combination of an REP and local dental pulp cell (DPC) transplantation in the mature molars of C57BL/6 mice with (REP + DPC group) or without (REP group) transplantation of DPCs from green fluorescent protein (GFP) transgenic mice. After 4 weeks, the regenerated tissue was evaluated by micro-computed tomography and histological analyses to detect odontoblasts, vasculogenesis, and neurogenesis. DPCs were assessed for mesenchymal and pluripotency markers. Four weeks after the REP, the molars showed no signs of periapical lesions, and both the REP and REP + DPC groups exhibited a pulp-like tissue composed of a cellular matrix with vessels surrounded by an eosin-stained acellular matrix that resembled hard tissue. However, the REP + DPC group had a broader cellular matrix and uniquely contained odontoblast-like cells co-expressing GFP. Vasculogenesis and neurogenesis were detected in both groups, with the former being more prominent in the REP + DPC group. Overall, the REP was achieved in mature mouse molars and DPC transplantation improved the outcomes by inducing the formation of odontoblast-like cells and greater vasculogenesis.


Assuntos
Endodontia Regenerativa , Camundongos , Animais , Endodontia Regenerativa/métodos , Polpa Dentária , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Dentina , Transplante de Células
12.
Int Dent J ; 74(3): 597-606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184457

RESUMO

OBJECTIVES: The aim of this study was to investigate the molecular mechanism underlying odontoblast damage repair in dentin hypersensitivity (DH) and the role of Yes-associated protein (YAP) in this process. METHODS: The DH model was constructed in Sprague-Dawley (SD) rats, and the in vivo expression of Piezo1, Integrin αvß3, YAP, and dentin sialophosphoprotein (DSPP) was detected by immunohistochemistry. COMSOL Multiphysics software was used to simulate the dentinal tubule fluid flow velocity and corresponding fluid shear stress (FSS) on the odontoblast processes. MDPC-23 cells were cultured in vitro and loaded with a peristaltic pump for 1 hour at FSS values of 0.1, 0.3, 0.5, and 0.7 dyne/cm2. The expression of Piezo1, Integrin αvß3, and YAP was detected by immunofluorescence. Verteporfin (a YAP-specific inhibitor) was utilised to confirm the effect of YAP on the expression of dentineogenesis-related protein under FSS. RESULTS: The level and duration of external mechanical stimuli have an effect on the functional expression of odontoblasts. In DH, the harder the food that is chewed, the faster the flow of the dentinal tubule fluid and the greater the FSS on the odontoblast processes. The expression of Piezo1, Integrin αvß3, and YAP can be promoted when the FSS is less than 0.3 dyne/cm2. After YAP inhibition, the DSPP protein expression level was reduced at 0.3 dyne/cm2 FSS. CONCLUSIONS: These results suggest that appropriate FSS can enhance the expression of odontoblast-related factors in odontoblasts via the Piezo1-Integrin αvß3-YAP mechanotransduction pathway and the YAP appears to play an essential role in the response of odontoblasts to external mechanical stimuli.


Assuntos
Sensibilidade da Dentina , Odontoblastos , Proteínas de Sinalização YAP , Animais , Ratos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sensibilidade da Dentina/genética , Sensibilidade da Dentina/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Imuno-Histoquímica , Integrina alfaVbeta3/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana , Odontoblastos/metabolismo , Fosfoproteínas/metabolismo , Ratos Sprague-Dawley , Sialoglicoproteínas/metabolismo , Estresse Mecânico , Verteporfina/farmacologia , Verteporfina/uso terapêutico
13.
Lasers Med Sci ; 39(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165503

RESUMO

This in vitro experimental investigation aimed to evaluate the impact of the combined application of a nanofiber scaffold (NS), a polymeric catalyst primer (PCP) containing 10 mg/mL of heme peroxidase enzyme, and violet LED (LEDv) on the esthetic efficacy (EE), trans-amelodentinal cytotoxicity (TC), and procedural duration of conventional in-office bleaching therapy. To achieve this, 96 standardized enamel/dentin discs were individually placed in artificial pulp chambers. A 35% hydrogen peroxide (H2O2) bleaching gel was administered for 45, 30, or 15 min to the enamel, either previously coated with NS + PCP or left uncoated, followed by irradiation with LEDv for 15 min or no irradiation. The established groups were as follows: G1, negative control (no treatment); G2, 35% H2O2/45 min; G3, NS + PCP + LEDv; G4, NS + PCP + 35%H2O2/45 min + LEDv; G5, NS + PCP + 35%H2O2/30 min + LEDv; and G6, NS + PCP + 35%H2O2/15 min + LEDv. Extracts (culture medium + gel components diffused through the discs) were collected and applied to odontoblast-like MDPC-23 cells. EE (ΔE00 and ΔWI) and TC were assessed using ANOVA/Tukey analysis (p < 0.05). The EE analysis revealed no statistical differences between G6 and G2 (p > 0.05). Cells in G6 exhibited higher viability and lower oxidative stress compared to other bleached groups (p < 0.05). In conclusion, employing NS + PCP + LEDv to catalyze a 35%H2O2 bleaching gel applied for 15 min to the enamel resulted in successful esthetic improvements and reduced the cytotoxicity commonly linked with traditional in-office bleaching procedures.


Assuntos
Peróxido de Hidrogênio , Polímeros , Peróxido de Hidrogênio/farmacologia , Biopolímeros , Catálise , Meios de Cultura
14.
Odontology ; 112(1): 125-137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37493885

RESUMO

Perfect intercellular junctions are key for odontoblast barrier function. However, whether Partitioning defective-3 (Par3) is expressed in odontoblasts and its potential effects on odontoblast junctions are unknown. Herein, we investigated the effect of Par3 on cellular junctions and the biological behavior of odontoblast-lineage cells (OLCs). Whole-transcriptome sequencing was used to analyze the effects of Par3 on OLCs and the underlying molecular mechanism. Par3 was detected under physiological and inflammatory conditions in OLCs. To investigate the regulatory effect of Par3 on junctions between mouse OLCs, the effects of Par3 downregulation on the proliferation, migration, cycle and apoptosis of OLCs were detected by 5-ethyl-2'-deoxyuridine (EdU) and Transwell assays and flow cytometry. Western blotting and alizarin red S and alkaline phosphatase (ALP) staining were used to observe the effect of Par3 downregulation on OLC mineralization. Whole-transcriptome sequencing was used to investigate the biological role of Par3 in OLCs and potential molecular mechanisms. Par3 was located along the odontoblast layer in the rat pulp tissue and in the cytoplasm of OLCs. Par3 expression was downregulated under inflammatory conditions. The OLC junctions were discontinuous, and total Zona occluden-1 (ZO-1) expression and expression of ZO-1 at the membrane in OLCs were reduced after Par3 silencing (P < 0.05). Expression of a junction-related protein (ZO-1) was downregulated after the downregulation of Par3 (P < 0.05), and ZO-1 moved from the cell membrane to the cytoplasm. OLC proliferation and migration were enhanced, but apoptosis and mineralization were inhibited in shPar3-transfected cells (P < 0.05). Sequencing identified 2996 differentially expressed genes (DEGs), which were mainly enriched in the response to stimuli and binding. Downregulation of Par3 could overactivate the PI3k-AKT pathway by promoting AKT phosphorylation (P < 0.05). Downregulation of Par3 may disrupt junctions between OLCs by affecting ZO-1 expression and distribution and promote OLC proliferation and migration but inhibit OLC mineralization. Par3 may interact with 14-3-3 proteins for PI3K-AKT pathway activation to affect OLC junctions and function.


Assuntos
Odontoblastos , Fosfatidilinositol 3-Quinases , Camundongos , Ratos , Animais , Odontoblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Linhagem Celular , Junções Intercelulares , Diferenciação Celular
15.
Int Dent J ; 74(1): 71-80, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833209

RESUMO

OBJECTIVES: The aim of this research was to investigate the functions of Piezo channels in dentin defect, including mechanical signalling and odontoblast responses. METHODS: Rat dentin-defect models were constructed, and spatiotemporal expression of Piezo proteins was detected in the pulpo-dentinal complex. Real-time polymerase chain reaction (rtPCR) was used to investigate the functional expression pattern of Piezo channels in odontoblasts. Moreover, RNA interference technology was employed to uncover the underlying mechanisms of the Piezo-driven inflammatory response and repair under fluid shear stress (FSS) conditions in vitro. RESULTS: Piezo1 and Piezo2 were found to be widely expressed in the odontoblast layer and dental pulp in the rat dentin-defect model during the end stage of reparative dentin formation. The expression levels of the Piezo1 and Piezo2 genes in MDPC-23 cells were high in the initial stage under FSS loading and then decreased over time. Moreover, the expression trends of inflammatory, odontogenic, and mineralisation genes were generally contrary to those of Piezo1 and Piezo2 over time. After silencing of Piezo1/Piezo2, FSS stimulation resulted in significantly higher expression of inflammatory, odontogenesis, and mineralisation genes in MDPC-23 cells. Finally, the expression of genes involved in the integrin ß1/ERK1 and Wnt5b/ß-catenin signalling pathways was changed in response to RNA silencing of Piezo1 and Piezo2. CONCLUSIONS: Piezo1 and Piezo2 may be involved in regulating the expression of inflammatory and odontogenic genes in odontoblasts stimulated by FSS.


Assuntos
Odontoblastos , Ratos , Humanos , Animais , Odontoblastos/fisiologia
16.
J Oral Biosci ; 66(1): 98-104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979655

RESUMO

OBJECTIVES: Immunoglobulin (Ig)A nephropathy has been associated with oral infections such as periodontitis, but its pathogenesis is not fully understood; no treatments exist. This study analyzes the influence of IgA nephropathy, an autoimmune disease, on the pathogenesis of pulpitis and apical periodontitis. METHODS: Two groups of mice were used in pulp infection experiments: high serum IgA nephropathy model mice (HIGA) and control mice (BALB/c). Histologic analyses of the pulp and apical periodontal tissues were performed on days 3, 5, 7, 14, and 28 following oral bacterial infection. The dynamics of odontoblasts, apoptotic cells, and IgA expression were analyzed using anti-Nestin, TUNEL, and anti-IgA staining, respectively. RESULTS: Inflammatory cells infiltrated the exposed pulp at day three in both groups and by 14 days, these cells had infiltrated from the pulp to the apical periodontal tissue. The area of necrotic pulp tissue increased significantly in the control group at seven days. Odontoblasts decreased from day three onwards and disappeared by 28 days in both groups. The number of apoptotic cells in the pulp and apical periodontal tissues was significantly higher in the experimental group at day 28. The experimental group exhibited a significant increase in IgA production in the pulp after 14 days. Bone resorption in the apical periodontal tissue was significantly decreased in the experimental group at day 28. CONCLUSIONS: The results of this study suggest that IgA nephropathy may modulate the inflammatory response and sustain long-term biological defense responses in pulpitis and apical periodontitis in HIGA mice.


Assuntos
Glomerulonefrite por IGA , Periodontite Periapical , Pulpite , Camundongos , Animais , Pulpite/complicações , Pulpite/patologia , Glomerulonefrite por IGA/etiologia , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Periodontite Periapical/complicações , Periodontite Periapical/patologia , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Imunoglobulina A
17.
Arch Oral Biol ; 158: 105858, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056229

RESUMO

OBJECTIVE: This study intends to investigate the effect of a soft food diet on molar dentin formation during the occlusal establishment period. It can provide dietary guidance for infants to strengthen their dental structure. DESIGN: 60 BALB/c mice were used to obtain mandibles during lactation (P0.5, P7.5, P15.5, P21.5) and occlusal establishment (P27.5, P33.5, P60.5). The mice were randomly divided into soft or hard diet groups after weaning at day 21.5. Hematoxylin-eosin and aniline blue staining were used to observe the morphology and number of odontoblasts and the amount of molar dentin formation. Immunohistochemistry was performed to observe the proliferation and apoptosis of odontoblasts. The in vivo fluorescence double-labeling was applied to evaluate the rate of molar dentin formation. RESULTS: The soft diet group had poorer periodontal membrane development but more cervical dentin deposition. Alterations in morphology and the number of odontoblasts showed a stronger correlation with age rather than food hardness. There are no significant differences in proliferative and apoptotic behavior of dentin-forming cells between the two groups. Rather, it affected the rate of dentin deposition. The rate of dentin deposition was high in the soft diet group from P21.5 to P27.5, but it was surpassed by the hard diet group within P27.5-P33.5, and the difference between the two groups disappeared at P33.5-P60.5. CONCLUSIONS: A soft diet promotes molar early cervical dentin formation. This advantage is caused by an enhanced odontoblast secretion rate rather than affecting the morphology, number, proliferation, or apoptosis of odontoblasts.


Assuntos
Dentina , Dentinogênese , Humanos , Feminino , Camundongos , Animais , Odontoblastos , Dente Molar , Dieta , Diferenciação Celular
18.
Anat Rec (Hoboken) ; 307(5): 1960-1968, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37975162

RESUMO

PIEZO1 and PIEZO2 are essential components of mechanogated ion channels, which are required for mechanotransduction and biological processes associated with mechanical stimuli. There is evidence for the presence of PIEZO1 and PIEZO2 in teeth and periodontal ligaments, especially in cell lines and mice, but human studies are almost nonexistent. Decalcified permanent human teeth and mouse molars were processed for immunohistochemical detection of PIEZO1 and PIEZO2. Confocal laser microscopy was used to examine the co-localization of PIEZO 1 and PIEZO2 with vimentin (a marker of differentiated odontoblasts) in human teeth. In the outer layer of the human dental pulp, abundant PIEZO1- and PIEZO2-positive cells were found that had no odontoblast morphology and were vimentin-negative. Based on their morphology, location, and the absence of vimentin positivity, they were identified as dental pulp stem cells or pre-odontoblasts. However, in mice, PIEZO1 and PIEZO2 were ubiquitously detected and colocalized in odontoblasts. Intense immunoreactivity of PIEZO1 and PIEZO2 has been observed in human and murine periodontal ligaments. Our findings suggest that PIEZO1 and PIEZO2 may be mechanosensors/mechanotransducers in murine odontoblasts, as well as in the transmission of forces by the periodontal ligament in humans and mice.


Assuntos
Mecanotransdução Celular , Ligamento Periodontal , Humanos , Camundongos , Animais , Ligamento Periodontal/metabolismo , Vimentina/metabolismo , Polpa Dentária , Canais Iônicos/metabolismo
19.
Anat Rec (Hoboken) ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051150

RESUMO

We used fluorochrome labeling to study spatiotemporal variation of dentin apposition (DAR) and extension (DER) rates during crown and root formation of mandibular first molars from wild boar and domestic pigs. DAR was reconstructed along the course of dentinal tubules in four zones of the crown and in the upper root area. In all five zones, mean DAR increased during the first 30% to 40% of apposition, reaching highest values (22-23 µm/day) in the upper-lateral crown zone. Lowest values were recorded near the dentin-pulp interface (DPI). Typically, DARs in contemporaneously formed dentin areas were higher in more cuspally compared to more cervically/apically located zones. DER was high (>200 µm/day) in early postnatal crown dentin and then decreased markedly in cervical direction, with lowest values in the cervical crown zone. After this nadir, DER sharply increased in the upper 30% to 40% of the root extension, reaching values equaling (wild boar) or even surpassing (domestic pigs) those recorded in the upper lateral crown. After this peak, DER again decreased. While DAR did not differ markedly between wild boar and domestic pigs, the DER showed marked differences, both regarding maximum values (208.1 µm/day in wild boar, 272.2 µm/day in domestic pigs) and the timing of the root growth spurt, which occurred earlier in the domestic pigs. We consider the more rapid recruitment of secretory odontoblasts in domestic pigs (reflected by higher DER) a side effect of selection for rapid body growth during pig domestication.

20.
Front Physiol ; 14: 1313927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148896

RESUMO

Regenerative dentistry has rapidly progressed since the advancement of stem cell biology and material science. However, more emphasis has been placed on the success of tissue formation than on how well the newly generated tissue retains the original structure and function. Once dentin is lost, tertiary dentinogenesis can be induced by new odontoblastic differentiation or re-activation of existing odontoblasts. The characteristic morphology of odontoblasts generates the tubular nature of dentin, which is a reservoir of fluid, ions, and a number of growth factors, and protects the inner pulp tissue. Therefore, understanding the dynamic but delicate process of new dentin formation by odontoblasts, or odontoblast-like cells, following dentinal defects is crucial. In this regard, various efforts have been conducted to identify novel molecules and materials that can promote the regeneration of dentin with strength and longevity. In this review, we focus on recent progress in dentin regeneration research with biological molecules identified, and discuss its potential in future clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA