Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Fundam Res ; 4(2): 394-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38933503

RESUMO

Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant ßA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.

2.
J Biol Chem ; 300(6): 107404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782204

RESUMO

Infectious diseases are a significant cause of death, and recent studies estimate that common bacterial infectious diseases were responsible for 13.6% of all global deaths in 2019. Among the most significant bacterial pathogens is Staphylococcus aureus, accounting for more than 1.1 million deaths worldwide in 2019. Vitamin biosynthesis has been proposed as a promising target for antibacterial therapy. Here, we investigated the biochemical, structural, and dynamic properties of the enzyme complex responsible for vitamin B6 (pyridoxal 5-phosphate, PLP) biosynthesis in S. aureus, which comprises enzymes SaPdx1 and SaPdx2. The crystal structure of the 24-mer complex of SaPdx1-SaPdx2 enzymes indicated that the S. aureus PLP synthase complex forms a highly dynamic assembly with transient interaction between the enzymes. Solution scattering data indicated that SaPdx2 typically binds to SaPdx1 at a substoichiometric ratio. We propose a structure-based view of the PLP synthesis mechanism initiated with the assembly of SaPLP synthase complex that proceeds in a highly dynamic interaction between Pdx1 and Pdx2. This interface interaction can be further explored as a potentially druggable site for the design of new antibiotics.


Assuntos
Proteínas de Bactérias , Fosfato de Piridoxal , Staphylococcus aureus , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Conformação Proteica , Ligação Proteica
3.
J Mol Biol ; 436(12): 168592, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38702038

RESUMO

Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.


Assuntos
Proteínas 14-3-3 , Nucleofosmina , Humanos , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Sítios de Ligação , Nucleofosmina/química , Nucleofosmina/genética , Nucleofosmina/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica
4.
IUBMB Life ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748402

RESUMO

Helicobacter pylori encodes homologues of PilM, PilN and PilO from bacteria with Type IV pili, where these proteins form a pilus alignment complex. Inactivation of pilO changes H. pylori motility in semi-solid media, suggesting a link to the chemosensory pathways or flagellar motor. Here, we showed that mutation of the pilO or pilN gene in H. pylori strain SS1 reduced the mean linear swimming speed in liquid media, implicating PilO and PilN in the function, or regulation of, the flagellar motor. We also demonstrated that the soluble variants of H. pylori PilN and PilO share common biochemical properties with their Type IV pili counterparts which suggests their adapted function in the bacterial flagellar motor may be similar to that in the Type IV pili.

5.
Int J Biol Macromol ; 269(Pt 2): 131834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688341

RESUMO

The amylosucrase (ASase, EC 2.4.1.4) utilizes sucrose as the sole substrate to catalyze multifunctional reactions. It can naturally synthesize α-1,4-linked glucans such as amylose as well as sucrose isomers with more favorable properties than sucrose with a lower intestinal digestibility and non-cariogenic properties. The amino acid sequence of the asase gene from Deinococcus cellulosilyticus (DceAS) exhibits low homology with those of other ASases from other Deinococcus species. In this study, we cloned and expressed DceAS and demonstrated its high activity at pH 6 and pH 8 and maintained stability. It showed higher polymerization activity at pH 6 than at pH 8, but similar isomerization activity and produced more turanose and trehalulose at pH 6 than at pH 8 and produced more isomaltulose at pH 8. Furthermore, the molecular weight of DceAS was 226.6 kDa at pH 6 and 145.5 kDa at pH 8, indicating that it existed as a trimer and dimer, respectively under those conditions. Additionally, circular dichroism spectra showed that the DceAS secondary structure was different at pH 6 and pH 8. These differences in reaction products at different pHs can be harnessed to naturally produce sucrose alternatives that are more beneficial to human health.


Assuntos
Deinococcus , Glucosiltransferases , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Deinococcus/enzimologia , Deinococcus/genética , Concentração de Íons de Hidrogênio , Isomaltose/metabolismo , Isomaltose/química , Isomaltose/análogos & derivados , Sequência de Aminoácidos , Estabilidade Enzimática , Clonagem Molecular , Peso Molecular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sacarose/metabolismo , Especificidade por Substrato , Cinética , Estrutura Secundária de Proteína , Dissacarídeos
6.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339159

RESUMO

KCTD ((K)potassium Channel Tetramerization Domain-containing) proteins constitute an emerging class of proteins involved in fundamental physio-pathological processes. In these proteins, the BTB domain, which represents the defining element of the family, may have the dual role of promoting oligomerization and favoring functionally important partnerships with different interactors. Here, by exploiting the potential of recently developed methodologies for protein structure prediction, we report a comprehensive analysis of the interactions of all KCTD proteins with their most common partner Cullin 3 (Cul3). The data here presented demonstrate the impressive ability of this approach to discriminate between KCTDs that interact with Cul3 and those that do not. Indeed, reliable and stable models of the complexes were only obtained for the 15 members of the family that are known to interact with Cul3. The generation of three-dimensional models for all KCTD-Cul3 complexes provides interesting clues on the determinants of the structural basis of this partnership as clear structural differences emerged between KCTDs that bind or do not bind Cul3. Finally, the availability of accurate three-dimensional models for KCTD-Cul3 interactions may be valuable for the ad hoc design and development of compounds targeting specific KCTDs that are involved in several common diseases.


Assuntos
Proteínas Culina , Canais de Potássio , Humanos , Sequência de Aminoácidos , Proteínas Culina/química , Canais de Potássio/química , Ligação Proteica , Multimerização Proteica
7.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405961

RESUMO

Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phospho-sites in NPM1 reside within signal sequences, this work highlights a key mechanism of NPM1 regulation by which NPM1 phosphorylation promotes 14-3-3 binding to control nucleocytoplasmic shuttling. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.

8.
BMC Bioinformatics ; 24(1): 433, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964216

RESUMO

BACKGROUND: Determining a protein's quaternary state, i.e. the number of monomers in a functional unit, is a critical step in protein characterization. Many proteins form multimers for their activity, and over 50% are estimated to naturally form homomultimers. Experimental quaternary state determination can be challenging and require extensive work. To complement these efforts, a number of computational tools have been developed for quaternary state prediction, often utilizing experimentally validated structural information. Recently, dramatic advances have been made in the field of deep learning for predicting protein structure and other characteristics. Protein language models, such as ESM-2, that apply computational natural-language models to proteins successfully capture secondary structure, protein cell localization and other characteristics, from a single sequence. Here we hypothesize that information about the protein quaternary state may be contained within protein sequences as well, allowing us to benefit from these novel approaches in the context of quaternary state prediction. RESULTS: We generated ESM-2 embeddings for a large dataset of proteins with quaternary state labels from the curated QSbio dataset. We trained a model for quaternary state classification and assessed it on a non-overlapping set of distinct folds (ECOD family level). Our model, named QUEEN (QUaternary state prediction using dEEp learNing), performs worse than approaches that include information from solved crystal structures. However, it successfully learned to distinguish multimers from monomers, and predicts the specific quaternary state with moderate success, better than simple sequence similarity-based annotation transfer. Our results demonstrate that complex, quaternary state related information is included in such embeddings. CONCLUSIONS: QUEEN is the first to investigate the power of embeddings for the prediction of the quaternary state of proteins. As such, it lays out strengths as well as limitations of a sequence-based protein language model approach, compared to structure-based approaches. Since it does not require any structural information and is fast, we anticipate that it will be of wide use both for in-depth investigation of specific systems, as well as for studies of large sets of protein sequences. A simple colab implementation is available at: https://colab. RESEARCH: google.com/github/Furman-Lab/QUEEN/blob/main/QUEEN_prediction_notebook.ipynb .


Assuntos
Idioma , Proteínas , Proteínas/química , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Transporte Proteico
9.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686452

RESUMO

The ß-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
10.
Biomolecules ; 13(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238591

RESUMO

The mitochondrial pyruvate carrier (Mpc) plays an indispensable role in the transport of pyruvates across the mitochondrial inner membrane. Despite the two distinct homologous proteins, Mpc1 and Mpc2, were identified in 2012, there are still controversies on the basic functional units and oligomeric state of Mpc complexes. In this study, yeast Mpc1 and Mpc2 proteins were expressed in a prokaryotic heterologous system. Both homo- and hetero-dimers were successfully reconstituted in mixed detergents. Interactions among Mpc monomers were recorded utilizing paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) methods. By single-channel patch-clamp assays, we discovered that both the Mpc1-Mpc2 hetero-dimer and Mpc1 homo-dimer are able to transport K+ ions. Furthermore, the Mpc1-Mpc2 hetero-dimer demonstrated the ability to transport pyruvates, at a rate significantly higher than that of the Mpc1 homo-dimer, indicating that it could be the basic functional unit of Mpc complexes. Our findings provide valuable insights for further structural determination and the study of the transport mechanism of Mpc complexes.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Espectroscopia de Ressonância Magnética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Piruvatos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362127

RESUMO

Oligomerization endows proteins with some key properties such as extra-stabilization, long-range allosteric regulation(s), and partnerships not accessible to their monomeric counterparts. How oligomerization is achieved and preserved during evolution is a subject of remarkable scientific relevance. By exploiting the abilities of the machine-learning algorithms implemented in AlphaFold (AF) in predicting protein structures, herein, we report a comprehensive analysis of the structural states of functional oligomers of all members of the KCTD protein family. Interestingly, our approach led to the identification of reliable three-dimensional models for the pentameric states of KCNRG, KCTD6, KCTD4, KCTD7, KCTD9, and KCTD14 and possibly for KCTD11 and KCTD21 that are involved in key biological processes and that were previously uncharacterized from a structural point of view. Although for most of these proteins, the CTD domains lack any sequence similarity, they share some important structural features, such as a propeller-like structure with a central cavity delimited by five exposed and regular ß-strands. Moreover, the structure of the related proteins KCTD7 and KCTD14, although pentameric, appears to be characterized by a different organization of the CTD region, with the five chains forming a circle-like structure with a large cavity. Our predictions also suggest that other members of the family, such as KCTD10, KCTD13, and TNFAIP1, present a strong propensity to assume dimeric states. Although the structures of the functional oligomers reported herein represent models that require additional validations, they provide a consistent and global view of KCTD protein oligomerization.


Assuntos
Canais de Potássio , Proteínas , Ligação Proteica , Canais de Potássio/metabolismo , Proteínas/metabolismo
12.
Front Mol Neurosci ; 15: 1009976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340691

RESUMO

Mutations in the gene for human stefin B (cystatin B) cause progressive myoclonic epilepsy type 1 (EPM1), a neurodegenerative disorder. The most common change is dodecamer repeats in the promoter region of the gene, though missense and frameshift mutations also appear. Human stefin B primarily acts as a cysteine cathepsin inhibitor, and it also exhibits alternative functions. It plays a protective role against oxidative stress, likely via reducing mitochondrial damage and thus generating fewer mitochondrial reactive oxygen species (ROS). Accordingly, lack of stefin B results in increased inflammation and NLRP3 inflammasome activation, producing more ROS. The protein is cytosolic but also has an important role in the nucleus, where it prevents cleavage of the N terminal part of histone 3 by inhibiting cathepsins L and B and thus regulates transcription and cell cycle. Furthermore, it has been shown that stefin B is oligomeric in cells and that it has a specific role in the physiology of the synapse and in vesicular transport. On the basis of my research team's data on the structure, folding, and aggregation of stefin B, we have proposed that it might regulate proteostasis, possessing a chaperone-like function. In this review, I synthesize these observations and derive some conclusions on possible sources of EPM1 pathology. The interaction partners of stefin B and other gene mutations leading to EPM1-like pathology are discussed and common pathways are pinpointed.

13.
Structure ; 30(12): 1647-1659.e4, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356587

RESUMO

STARD3, a steroidogenic acute regulatory lipid transfer protein, was identified as a key xanthophyll-binding protein in the human retina. STARD3 and its homologs in invertebrates are known to bind and transport carotenoids, but this lacks structural elucidation. Here, we report high-resolution crystal structures of the apo- and zeaxanthin (ZEA)-bound carotenoid-binding protein from silkworm Bombyx mori (BmCBP). Having a STARD3-like fold, BmCBP features novel elements, including the Ω1-loop that, in the apoform, is uniquely fixed on the α4-helix by an R173-D279 salt bridge. We exploit absorbance, Raman and dichroism spectroscopy, and calorimetry to describe how ZEA and BmCBP mutually affect each other in the complex. We identify key carotenoid-binding residues, confirm their roles by ZEA-binding capacity and X-ray structures of BmCBP mutants, and also demonstrate that markedly different carotenoid-binding capacities of BmCBP and human STARD3 stem from differences in the structural organization of their carotenoid-binding cavity.


Assuntos
Bombyx , Luteína , Animais , Humanos , Zeaxantinas/metabolismo , Luteína/química , Luteína/metabolismo , Proteínas de Transporte/química , Bombyx/metabolismo , Carotenoides/metabolismo
14.
Elife ; 112022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205395

RESUMO

The oligomeric state of plasma membrane proteins is the result of the interactions between individual subunits and an important determinant of their function. Most approaches used to address this question rely on extracting these complexes from their native environment, which may disrupt weaker interactions. Therefore, microscopy techniques have been increasingly used in recent years to determine oligomeric states in situ. Classical light microscopy suffers from insufficient resolution, but super-resolution methods such as single molecule localization microscopy (SMLM) can circumvent this problem. When using SMLM to determine oligomeric states of proteins, subunits are labeled with fluorescent proteins that only emit light following activation or conversion at different wavelengths. Typically, individual molecules are counted based on a binomial distribution analysis of emission events detected within the same diffraction-limited volume. This strategy requires low background noise, a high recall rate for the fluorescent tag and intensive post-imaging data processing. To overcome these limitations, we developed a new method based on SMLM to determine the oligomeric state of plasma membrane proteins. Our dual-color colocalization (DCC) approach allows for accurate in situ counting even with low efficiencies of fluorescent protein detection. In addition, it is robust in the presence of background signals and does not require temporal clustering of localizations from individual proteins within the same diffraction-limited volume, which greatly simplifies data acquisition and processing. We used DCC-SMLM to resolve the controversy surrounding the oligomeric state of two SLC26 multifunctional anion exchangers and to determine the oligomeric state of four members of the SLC17 family of organic anion transporters.


Assuntos
Microscopia , Transportadores de Ânions Orgânicos , Imagem Individual de Molécula/métodos , Proteínas de Membrana , Corantes Fluorescentes
15.
Int J Biol Macromol ; 222(Pt A): 167-180, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165868

RESUMO

Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades - OCP3a, OCP3b, OCP3c.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/química , Ficobilissomas/química , Synechocystis/metabolismo , Carotenoides/química , Fluorescência
16.
J Biol Chem ; 298(9): 102321, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921890

RESUMO

The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential-dependent oligomeric switch.


Assuntos
Homeostase , Metaloproteases , Mitocôndrias , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Células HeLa , Humanos , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo
17.
Biochem Biophys Res Commun ; 627: 176-183, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36041327

RESUMO

Nucleophosmin 1 (NPM1) is a multifunctional protein regulating ribosome biogenesis, centrosome duplication and chromatin remodeling. Being a major nucleolar protein, NPM1 can migrate to the nucleus and the cytoplasm, which is controlled by changes of NPM1 oligomerization and interaction with other cell factors. NPM1 forms a stable pentamer with its N-terminal structured domain, where two nuclear export signals and several phosphorylation sites reside. This domain undergoes dissociation and disordering upon Ser48 phosphorylation in the subunit interface. Recent studies indicated that Ser48 is important for NPM1 interaction with other proteins including 14-3-3, the well-known phosphoserine/phosphothreonine binders, but the structural basis for 14-3-3/NPM1 interaction remained unaddressed. By fusing human 14-3-3ζ with an NPM1 segment surrounding Ser48, which was phosphorylated inside Escherichia coli cells by co-expressed protein kinase A, here we obtained the desired protein/phosphopeptide complex and determined its crystal structure. While biochemical data indicated that the interaction is driven by Ser48 phosphorylation, the crystallographic 14-3-3/phosphopeptide interface reveals an NPM1 conformation distinctly different from that in the NPM1 pentamer. Given the canonical phosphopeptide-binding mode observed in our crystal structure, Ser48 emerges as a conditional binding site whose recognition by 14-3-3 proteins is enabled by NPM1 phosphorylation, disassembly and disordering under physiological circumstances.


Assuntos
Proteínas 14-3-3 , Nucleofosmina , Proteínas 14-3-3/metabolismo , Sítios de Ligação , Humanos , Proteínas Nucleares/metabolismo , Fosfopeptídeos
19.
Eur Biophys J ; 51(3): 193-204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35380220

RESUMO

Defining protein oligomeric state and/or its changes in solution is of significant interest for many biophysical studies carried out in vitro, especially when the nature of the oligomeric state is crucial in the subsequent interpretation of experimental results and their biological relevance. Nuclear magnetic resonance (NMR) is a well-established methodology for the characterization of protein structure, dynamics, and interactions at the atomic level. As a spectroscopic method, NMR also provides a compelling means for probing both molecular translational and rotational motion, two predominant measures of effective molecular size in solution, under identical conditions as employed for structural, dynamic and interaction studies. Protein translational diffusion is readily measurable by pulse gradient spin echo (PGSE) NMR, whereas its rotational correlation time, or rotational diffusion tensor when its 3D structure is known, can also be quantified from NMR relaxation parameters, such as 15N relaxation parameters of backbone amides which are frequently employed for probing residue-specific protein backbone dynamics. In this article, we present an introductory overview to the NMR measurement of bimolecular translational and rotational motion for assessing changes of protein oligomeric state in aqueous solution, via translational diffusion coefficients measured by PGSE NMR and rotational correlation times derived from composite 15N relaxation parameters of backbone amides, without need for the protein structure being available.


Assuntos
Amidas , Proteínas , Difusão , Espectroscopia de Ressonância Magnética/métodos , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular/métodos
20.
Front Chem ; 10: 835733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321476

RESUMO

Protein phosphorylation is a critical mechanism that biology uses to govern cellular processes. To study the impact of phosphorylation on protein properties, a fully and specifically phosphorylated sample is required although not always achievable. Commonly, this issue is overcome by installing phosphomimicking mutations at the desired site of phosphorylation. 14-3-3 proteins are regulatory protein hubs that interact with hundreds of phosphorylated proteins and modulate their structure and activity. 14-3-3 protein function relies on its dimeric nature, which is controlled by Ser58 phosphorylation. However, incomplete Ser58 phosphorylation has obstructed the detailed study of its effect so far. In the present study, we describe the full and specific phosphorylation of 14-3-3ζ protein at Ser58 and we compare its characteristics with phosphomimicking mutants that have been used in the past (S58E/D). Our results show that in case of the 14-3-3 proteins, phosphomimicking mutations are not a sufficient replacement for phosphorylation. At physiological concentrations of 14-3-3ζ protein, the dimer-monomer equilibrium of phosphorylated protein is much more shifted towards monomers than that of the phosphomimicking mutants. The oligomeric state also influences protein properties such as thermodynamic stability and hydrophobicity. Moreover, phosphorylation changes the localization of 14-3-3ζ in HeLa and U251 human cancer cells. In summary, our study highlights that phosphomimicking mutations may not faithfully represent the effects of phosphorylation on the protein structure and function and that their use should be justified by comparing to the genuinely phosphorylated counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA