Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Front Nutr ; 11: 1408647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086538

RESUMO

Introduction: Omega-3 polyunsaturated fatty acids (PUFAs) have been widely studied and used as nutritional supplements because of their anti-inflammatory effects. Previous studies have shown an association between polyunsaturated fatty acids such as omega-3 and omega-6 PUFAs with the development of malignant tumors. However, the relationships of omega-3 and omega-6 PUFAs with esophageal diseases have not been characterized. Methods: Mendelian randomization (MR) is a statistical method for identifying instrumental variables (IVs) from genome-wide association study (GWAS) data, and is associated with little confounding by environmental or other disease-related factors. We used genome-wide association study (GWAS) data from previously published studies on circulating concentrations of omega-3, omega-6, docosahexaenoic acid (DHA) and linoleic acid (LA), as well as esophageal cancer and other esophageal diseases, which were downloaded from the IEU OpenGwas database (https://gwas.mrcieu.ac.uk/) and the GWAS Catalog database (https://www.ebi.ac.uk/). The inverse variance-weighted approach was used as the principal analysis, and the MR-Egger and weighted median methods were used alongside. A series of sensitivity analyses were used to ensure the robustness of the causality estimates. Results: We found that the circulating omega-3 PUFAs concentration was positively associated with esophageal cancer (p = 8 × 10-4), and circulating DHA concentration (the main component of omega-3 in food), was also positively associated with esophageal cancer (p = 2 × 10-2), but no significant association was found between circulating omega-6 PUFAs and esophageal cancer (p = 0.17), and circulating LA concentration (the main component of omega-6 in food), was also no significant associated with esophageal cancer (p = 0.32). We found no significant relationships of circulating omega-3 and omega-6 PUFAs concentration with four other esophageal diseases. Conclusion: This study indicates that higher levels of circulating omega-3 PUFAs and DHA concentrations may be a risk factor for the development of esophageal cancer. Conversely, an increased omega-6/omega-3 ratio may serve as a protective factor against esophageal cancer. These findings have significant implications for the clinical application of omega-3 PUFAs and the prevention and treatment of esophageal cancer.

2.
Skin Res Technol ; 30(8): e70000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138832

RESUMO

BACKGROUND: Increasing studies have reported a causal relationship between androgenetic alopecia (AGA) and lipid-related metabolites. However, the relationships between HDL-C, LDL-C, Omega-6, and Omega-3 with AGA remain unclear. Some research findings are even contradictory. Therefore, we designed this study to explore this issue. METHODS: In this study, we selected seven exposure factors, screened SNPs with significant associations, removed linkage disequilibrium and weak instrumental variables, and conducted bidirectional MR analysis. RESULTS: The study found that omega-6 and LDL-C, especially total cholesterol in medium LDL and total cholesterol in small LDL, are risk factors for the occurrence of androgenetic alopecia. CONCLUSION: In summary, we found that various lipid-related metabolites have a causal relationship with the occurrence of androgenetic alopecia, providing new insights into the pathogenesis of androgenetic alopecia and offering references for clinical treatment of androgenetic alopecia.


Assuntos
Alopecia , LDL-Colesterol , Ácidos Graxos Ômega-6 , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Alopecia/genética , LDL-Colesterol/sangue , Fatores de Risco , Masculino , Ácidos Graxos Ômega-3 , Feminino
3.
Artigo em Inglês | MEDLINE | ID: mdl-39171752

RESUMO

The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FA), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of 'pro-inflammatory' n6- to 'anti-inflammatory' n3-FA has grown dramatically due to the greater prevalence of n6-FA. Notably, AT macrophages (ATM) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance, but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, and their potential role in early-life metabolic programming, as well as the broader implications for metabolism and health.

4.
Cancer Treat Res ; 191: 57-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133404

RESUMO

Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.


Assuntos
Neoplasias , Humanos , Neoplasias/prevenção & controle , Animais , Ácidos Graxos Insaturados/uso terapêutico , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/uso terapêutico
5.
Front Endocrinol (Lausanne) ; 15: 1406382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170741

RESUMO

Background: Observational studies and clinical trials have implicated polyunsaturated fatty acids (PUFAs) in potentially safeguarding against diabetic microvascular complication. Nonetheless, the causal nature of these relationships remains ambiguous due to conflicting findings across studies. This research employs Mendelian randomization (MR) to assess the causal impact of PUFAs on diabetic microvascular complications. Methods: We identified instrumental variables for PUFAs, specifically omega-3 and omega-6 fatty acids, using the UK Biobank data. Outcome data regarding diabetic microvascular complications were sourced from the FinnGen Study. Our analysis covered microvascular outcomes in both type 1 and type 2 diabetes, namely diabetic neuropathy (DN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). An inverse MR analysis was conducted to examine the effect of diabetic microvascular complications on PUFAs. Sensitivity analyses were performed to validate the robustness of the results. Finally, a multivariable MR (MVMR) analysis was conducted to determine whether PUFAs have a direct influence on diabetic microvascular complications. Results: The study indicates that elevated levels of genetically predicted omega-6 fatty acids substantially reduce the risk of DN in type 2 diabetes (odds ratio (OR): 0.62, 95% confidence interval (CI): 0.47-0.82, p = 0.001). A protective effect against DR in type 2 diabetes is also suggested (OR: 0.75, 95% CI: 0.62-0.92, p = 0.005). MVMR analysis confirmed the stability of these results after adjusting for potential confounding factors. No significant effects of omega-6 fatty acids were observed on DKD in type 2 diabetes or on any complications in type 1 diabetes. By contrast, omega-3 fatty acids showed no significant causal links with any of the diabetic microvascular complications assessed. Conclusions: Our MR analysis reveals a causal link between omega-6 fatty acids and certain diabetic microvascular complications in type 2 diabetes, potentially providing novel insights for further mechanistic and clinical investigations into diabetic microvascular complications.


Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Análise da Randomização Mendeliana , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/epidemiologia , Masculino , Ácidos Graxos Insaturados , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Retinopatia Diabética/genética , Retinopatia Diabética/epidemiologia , Feminino , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Pessoa de Meia-Idade
6.
Clin Nutr Res ; 13(3): 176-185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39165292

RESUMO

Helicobacter pylori infection is the cause of 90% of non-cardia gastric cancer. Several dietary elements have been identified as possible contributors to H. pylori infection and its advancement through various pathways. Based on the anti-inflammatory and anti-microbial effects of a diet low in omega-6 and high in omega-3 polyunsaturated fatty acids (PUFAs), this study aimed to assess the ratio of dietary omega-6 to omega-3 PUFAs and the risk of developing H. pylori. The present case-control study was conducted on 150 cases with H. pylori infection and 302 controls. The omega-6 to omega-3 ratio was calculated using food intake information sourced from a validated food frequency questionnaire. Physical activity and demographic data were collected through a related questionnaire. The association between the odds of H. pylori infection and the omega-6 to omega-3 ratio was evaluated using logistic regression models. A p value < 0.05 was considered statistically significant. The findings revealed that individuals in the third tertile had significantly higher odds of H. pylori (odds ratio [OR], 2.10; 95% confidence interval [CI], 1.30-3.40) in the crude model. Furthermore, even after adjusting the potential confounders including sex, age, body mass index, physical activity, energy intake, alcohol, and smoking status, this association remained significant (fully adjusted model: OR, 2.00; 95% CI, 1.17-3.34). Our study revealed a higher ratio of omega-6 to omega-3 was related to a higher likelihood of H. pylori infection. Therefore, it is advisable to maintain a balanced intake of PUFAs in the diet.

7.
Front Psychiatry ; 15: 1345815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015886

RESUMO

Background: Identifying possible influencing factors is crucial for the depression symptoms of women experiencing infertility. This study aims to explore the association between polyunsaturated fatty acids (PUFAs) and the odds of depression symptoms in women experiencing infertility. Methods: This is a cross-sectional study based on the National Health and Nutrition Examination Survey (NHANES). PUFA intake was obtained through a 24-h dietary recall interview. Depression symptoms were defined using the Patient Health Questionnaire-9 (PHQ-9) with a score of ≥10 points or as taking antidepressants. The association between PUFA and depression was assessed using a logistic regression model by calculating the odds ratio (OR) with 95% confidence interval (CI). Subgroup analysis was carried out based on menopausal status and female hormone use. Results: There were 725 participants included for analysis. After adjusting the covariables, lower odds of depression symptoms were found in patients with the intake of omega-3 PUFA (OR = 0.48, 95% CI: 0.24-0.96) and omega-6 PUFA (OR = 0.24, 95% CI: 0.14-0.42) in the second tertile (T2) in comparison to the first tertile (T1). The intake of α-linolenic (ALA) (OR = 0.48, 95% CI: 0.23-0.97) and linoleic acid (OR = 0.24, 95% CI: 0.14-0.41) in T2 was also found to be related to the reduced odds of depression symptoms in comparison to T1. Conclusions: Our findings suggest a potential association between moderate omega-3 and omega-6 PUFA intake and a reduced risk of depression symptoms in women experiencing infertility. This implies that clinicians might find it useful to consider dietary advice that includes PUFA-rich foods as part of a broader strategy to address mental health in this patient group. However, further research is needed to confirm these preliminary findings and to establish the optimal levels of PUFA intake for mental health benefits.

8.
Br Poult Sci ; 65(4): 484-493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994721

RESUMO

1. This study was conducted to assess the effects of different dietary omega 6:3 ratios fed to male and female Japanese quail breeders on incubation performance, chick quality and progeny performance.2. A completely randomised design was used, with five diets containing different ratios of vegetable oils rich in linoleic acid (LA from soybean oil) or α-linolenic acid (ALA from linseed oil) with LA/ALA ratios of 13.75:1, 10.69:1, 7.63:1, 4.57:1 and 1.48:1 with 12 cage replicates containing six birds each.3. There was a quadratic effect of the LA/ALA ratio on total hatchability (p < 0.011), fertile hatchability (p = 0.046) and total mortality (p = 0.046). There was no effect on fertility (p > 0.05). The LA/ALA ratios of 1.48 and 13.75 fed to both hens and cockerels or hens resulted in greater fertility, as measured by the number of days after copulation during which fertile eggs were laid and the number of points of hydrolysis on the perivitelline membrane. A decreasing linear effect (p < 0.0001) was observed on chick length and an increasing linear effect on body weight at 1 day of age. There were no effects on progeny performance.4. The LA/ALA ratio affected yolk mineral matter (p = 0.009), crude protein (p = 0.091), chick mineral matter (p < 0.038) and ether extract (p < 0.0001) contents. Maternal diet affected the fatty acid profile of egg yolk and chick liver, indicating that dietary contents were transferred to eggs and chicks.5. Fertile egg production increased with lower LA/ALA ratios. Therefore, linseed oil can be used together with soybean oil to formulate diets for female Japanese quail obtain LA/ALA ratios between 4:1 and 10:1.


Assuntos
Ração Animal , Coturnix , Dieta , Ácido Linoleico , Reprodução , Ácido alfa-Linolênico , Animais , Coturnix/fisiologia , Feminino , Dieta/veterinária , Ração Animal/análise , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/análise , Masculino , Reprodução/efeitos dos fármacos , Ácido Linoleico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Distribuição Aleatória , Óleo de Semente do Linho/administração & dosagem , Fertilidade/efeitos dos fármacos , Suplementos Nutricionais/análise
9.
J Dairy Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908699

RESUMO

Our objective was to compare abomasal infusions of linoleic (18:2n-6) and α-linolenic (18:3n-3) acids on the enrichment of n-6 and n-3 fatty acids (FA) into the plasma lipid fractions of lactating dairy cows and evaluate their potential carryover effects in plasma lipid fractions post-infusion. Six rumen-cannulated multiparous Holstein cows (252 ± 33 d in milk) were fed the same diet and assigned to 1 of 2 treatments in a completely randomized design with repeated measures. Treatments were abomasal infusions (67 g/d total FA) of 1) n-6 FA blend (N6) to provide approximately 43 g/d 18:2n-6 and 8 g/d of 18:3n-3; or 2) n-3 FA blend (N3) providing 43 g/d 18:3n-3 and 8 g/d 18:2n-6. Treatments were dissolved in ethanol, and the daily dose for each treatment was divided into 4 equal infusions, occurring every 6 h. The treatment period lasted from d 1 to 20, and the carryover period lasted from d 21 to 40. Results are presented as FA contents within each of the 4 main plasma lipid fractions: cholesterol esters (CE), phospholipids (PL); triglycerides (TG), and plasma nonesterified fatty acids. Concentrations of individual lipid fractions in plasma were not quantified. Plasma CE and PL had the highest content of polyunsaturated FA (PUFA) during both the treatment and carryover periods. In plasma PL, N3 increased the contents of total n-3 FA (134%), 18:3n-3 (267%), and eicosapentaenoic acid (96.3%, 20:5n-3), and decreased total n-6 FA (8.14%) and 18:2n-6 (8.16%) from d 4 to 20 compared with N6. In plasma CE, N3 increased the contents of total n-3 FA (191%) from d 4 to 20, 18:3n-3 from d 2 to 20 (178%), and 20:5n-3 from d 6 to 20 (59.9%), while N3 decreased total n-6 FA from d 4 to 20 (11.2%) and 18:2n-6 from d 2 to 20 (10.5%) compared with N6. In addition, compared with N6, N3 decreased arachidonic acid (20:4n-6) at d 2 (45%) and from d 10 to 20 (14.7%) in PL and tended to decrease 20:4n-6 without interacting with time for CE. Phospholipids were the only lipid fraction with detectable levels of docosahexaenoic acid (22:3n-6) in all samples, but we did not observe differences between treatments. In plasma TG, N3 increased the contents of total n-3 FA (135%) and 18:3n-3 (146%) from d 4 to 20, increased 20:5n-3 from d 12 to 20 (89%), decreased or tended to decrease total n-6 FA content from d 6 and 8 (26.9%), and tended to decrease 18:2n-6 at d 8 compared with N6. A similar pattern was observed for plasma nonesterified fatty acids. We observed positive carryover effects for both N3 and N6 at different degrees in all lipid fractions, with N3 promoting more consistent outcomes and increasing total n-3 FA throughout the carryover period (from d 22 to 40) in both PL (52.8%) and CE (68.6%) compared with N6. It is important to emphasize that the higher magnitude responses observed for n-3 FA are also influenced by the content of n-3 FA being much lower than those of n-6 FA in all lipid fractions. While these data provide important and robust information, future research quantifying changes in concentrations of individual lipid fractions in plasma and the entry and exit rates of specific FA will further enhance our understanding. In conclusion, abomasally infusing N3 and N6 increased the contents of n-3 and n-6 FA, respectively, in all plasma lipid fractions. These responses were more evident in PL and CE. We also observed positive carryover effects in all lipid fractions, where N3 had more consistent outcomes than N6. Our results indicate that dairy cows have a robust mechanism to conserve essential FA, with a pronounced preference for n-3 FA.

10.
Front Nutr ; 11: 1356207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863588

RESUMO

Background: Currently, the association between the consumption of polyunsaturated fatty acids (PUFAs) and the susceptibility to autoimmune rheumatic diseases (ARDs) remains conflict and lacks substantial evidence in various clinical studies. To address this issue, we employed Mendelian randomization (MR) to establish causal links between six types of PUFAs and their connection to the risk of ARDs. Methods: We retrieved summary-level data on six types of PUFAs, and five different types of ARDs from publicly accessible GWAS statistics. Causal relationships were determined using a two-sample MR analysis, with the IVW approach serving as the primary analysis method. To ensure the reliability of our research findings, we used four complementary approaches and conducted multivariable MR analysis (MVMR). Additionally, we investigated reverse causality through a reverse MR analysis. Results: Our results indicate that a heightened genetic predisposition for elevated levels of EPA (ORIVW: 0.924, 95% CI: 0.666-1.283, P IVW = 0.025) was linked to a decreased susceptibility to psoriatic arthritis (PsA). Importantly, the genetically predicted higher levels of EPA remain significantly associated with an reduced risk of PsA, even after adjusting for multiple testing using the FDR method (P IVW-FDR-corrected = 0.033) and multivariable MR analysis (P MV-IVW < 0.05), indicating that EPA may be considered as the risk-protecting PUFAs for PsA. Additionally, high levels of LA showed a positive causal relationship with a higher risk of PsA (ORIVW: 1.248, 95% CI: 1.013-1.538, P IVW = 0.037). It is interesting to note, however, that the effects of these associations were weakened in our MVMR analyses, which incorporated adjustment for lipid profiles (P MV-IVW > 0.05) and multiple testing using the FDR method (P IVW-FDR-corrected = 0.062). Moreover, effects of total omega-3 PUFAs, DHA, EPA, and LA on PsA, were massively driven by SNP effects in the FADS gene region. Furthermore, no causal association was identified between the concentrations of other circulating PUFAs and the risk of other ARDs. Further analysis revealed no significant horizontal pleiotropy and heterogeneity or reverse causality. Conclusion: Our comprehensive MR analysis indicated that EPA is a key omega-3 PUFA that may protect against PsA but not other ARDs. The FADS2 gene appears to play a central role in mediating the effects of omega-3 PUFAs on PsA risk. These findings suggest that EPA supplementation may be a promising strategy for preventing PsA onset. Further well-powered epidemiological studies and clinical trials are warranted to explore the potential mechanisms underlying the protective effects of EPA in PsA.

11.
J Therm Biol ; 122: 103885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38861860

RESUMO

The current study aimed to investigate the use of omega-6 (ω6) or omega-3 (ω3) in reducing heat-induced damage to the testicles. This is due to the known detrimental effects of heat and the potential protective properties of ω6 and ω3. In the study, 48 male rats were divided into eight groups, each containing 6 rats. Group I (control) received normal saline. Group 2 was exposed to high temperatures (43 °C for 20 min/day) and also received normal saline for 60 days. Groups 3-7 underwent identical HS conditions and received varying doses of ω6 or ω3 (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT), respectively. After 60 days, various tests were conducted on the testicular tissue, sperm quality, oxidative status, gene activity, and in vivo fertility indexes to evaluate the effects of the treatments. Treatment with ω6 and ω3 could reduce abnormal morphology and DNA damage while increasing total and progressive motility, characteristics motility, viability, and plasma membrane functional impairment compared with HS-exposed groups. Antioxidant status levels in testicular tissue were improved after administration of ω6 and ω3. Furthermore, after receiving ω6 and ω3, there were significantly lower expression levels of P53 and Caspase-3 and significantly higher expression levels of Bcl-2 compared to the HS-exposed group. Furthermore, the results showed that administration of ω6 and ω3 to rats exposed to HS could increase their in vivo fertility indexes compared to the group not exposed to HS. According to our data, all doses of ω6 and ω3 (particularly doses of ω6-1.25 and ω3-300) can improve the testicular damage, testicular antioxidant defense mechanism, regulate germ cell apoptosis, and increase in vivo fertility indexes.


Assuntos
Antioxidantes , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Fertilidade , Espermatogênese , Testículo , Animais , Masculino , Ácidos Graxos Ômega-3/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Espermatogênese/efeitos dos fármacos , Ratos , Ácidos Graxos Ômega-6/farmacologia , Fertilidade/efeitos dos fármacos , Antioxidantes/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Ratos Wistar
12.
Curr Issues Mol Biol ; 46(6): 6041-6051, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921031

RESUMO

Polyunsaturated fatty acids (PUFAs), specifically Omega-3 (FAω3) and docosahexaenoic acid (DHA), have been studied for their potential role in modulating pancreatic cancer (PC) risk. Although observational studies suggest a beneficial effect in reducing this risk, their findings are often limited by confounding variables and issues of reverse causation. This study used a two-way two-sample Mendelian randomization (MR) method to test the hypothesized genetic causal relationship between PUFAs and PC risk. Data from an extensive genome-wide association study (GWAS) were analyzed, focusing on FAω3 and FAω6 levels, their ratios, and DHA as variables and PC incidence as outcomes. This relationship was comprehensively evaluated using related MR methods, such as inverse variance weighting (IVW), MR Egger, and weighted median (WM). This study finds a significant negative correlation between FAω3 and DHA levels and PC risk, while FAω6 levels show no significant correlation. Interestingly, the ratio of FAω6 to FAω3 was positively associated with increased risk of PC. Neither the MR Egger nor the MR-PRESSO tests detected significant pleiotropy, nor did the Cochrane's Q test show significant heterogeneity. Leave-one-out analyzes further confirmed the robustness of these results. Using MR analysis of two samples, this study provides genetic causal evidence that FAω3 and DHA levels reduce the risk of PC, whereas the ratio of FAω6 to FAω3 increases the risk of PC. These insights highlight the potential utility of supplementing FAω3 and DHA or altering PUFAs in developing PC prevention strategies.

13.
Transl Cancer Res ; 13(4): 1685-1694, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737698

RESUMO

Background: The causal link between kidney cancer and omega-3/6 (ω-3/6) fatty acids is yet to be clearly established. Therefore, the objective of our study was to investigate these potential causal relationships. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to investigate the possible causal association between ω-3/6 fatty acids and kidney cancer. We utilized the random effect inverse variance weighted (IVW) method as our primary analytical approach for the two-sample MR analysis. In addition, sensitivity analyses such as heterogeneity tests, pleiotropy analyses, and leave-one-out analyses were performed to assess the robustness of the MR analysis results. Results: The IVW method showed statistically significant associations between ω-3 and ω-6 fatty acids and increased risk of kidney cancer. The result for ω-3 and ω-6 were [odds ratio (OR) =1.27; 95% confidence interval (CI): 1.04-1.55; P=0.02] and (OR =1.56; 95% CI: 1.17-2.09; P=0.003), respectively. Moreover, in the results of sensitivity analyses, no apparent horizontal gene pleiotropy nor heterogeneity was observed. After performing "the leave-one-out" sensitivity analysis of the data one by one, no single nucleotide polymorphisms (SNPs) sites in each instrumental variable (IV) were found to have greatly affected the disease outcome. Conclusions: Elevated serum ω-3/6 fatty acids levels are causally associated with an increased risk of kidney cancer. Therefore, it is crucial to monitor dietary intake and properly intervene to lower these levels in those at risk of kidney cancer.

14.
Clin Nutr ESPEN ; 61: 37-45, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777457

RESUMO

OBJECTIVES: The evidence connecting polyunsaturated fatty acids (PUFAs) to biliary problems is still highly contested and speculative despite the fact that biliary diseases are common and PUFAs have long been studied for their potential health benefits. This work used Mendelian randomization (MR) techniques in conjunction with genome-wide association study (GWAS) data to clarify the causal relationships between PUFAs and biliary tract diseases. METHODS: We compiled data on PUFAs, including Omega-3 fatty acids, Omega-6 fatty acids, and the ratio of Omega-6 to Omega-3 fatty acids (Omega-6:Omega-3), using GWAS. MR was used to examine biliary tract problems (cholecystitis, cholelithiasis, gallbladder cancer, primary biliary cholangitis, primary sclerosing cholangitis, and disorders of gallbladder, biliary tract and pancreas). Single nucleotide polymorphisms significantly associated with PUFAs were selected as instrumental variables to estimate causal effects on biliary tract diseases. The final results were analyzed using five MR analysis techniques. Inverse variance weighting (IVW) was used as the primary outcome. And IVW was utilized in conjunction with the other MR analysis techniques (MR-Egger, weighted median, simple mode, and weighted mode). Additionally, we evaluated heterogeneity and horizontal multiplicity using the MR-Egger intercept test and Cochrane's Q test, respectively. Finally, to increase the accuracy and precision of the study outcomes, we carried out a number of sensitivity analyses. RESULTS: We found that Omega-3 fatty acids reduced the risk of cholecystitis (OR: 0.851, P = 0.009), cholelithiasis (OR: 0.787, P = 8.76e-5), and disorders of gallbladder, biliary tract and pancreas (OR: 0.842, P = 1.828e-4) but increased the primary biliary cholangitis (OR: 2.220, P = 0.004). There was no significant association between Omega-3 fatty acids and risk of gallbladder cancer (OR: 3.127, P = 0.530) and primary sclerosing cholangitis (OR: 0.919, P = 0.294). Omega-6 fatty acids were associated with a reduced risk of cholecystitis (OR: 0.845, P = 0.040). However, they were not linked to an increased or decreased risk of cholelithiasis (OR: 0.878, P = 0.14), gallbladder cancer (OR: 4.670, P = 0.515), primary sclerosing cholangitis (OR: 0.993, P = 0.962), primary cholestatic biliary cholangitis (OR: 1.404, P = 0.509), or disorders of gallbladder, biliary tract and pancreas. Omega-6:Omega-3 fatty acids were linked to a greater risk of cholecystitis, cholelithiasis, and disorders of gallbladder, biliary tract and pancreas (OR:1.168, P = 0.009, OR:1.191, P = 1.60e-6, and OR:1.160, P = 4.11e-6, respectively). But (OR: 0.315, P = 0.010) was linked to a decreased risk of primary biliary cholangitis. Not linked to risk of primary sclerosing cholangitis (OR: 1.079, P = 0.078) or gallbladder cancer (OR: 0.046, P = 0.402). According to the MR-Egger intercept, our MR examination did not appear to be impacted by any pleiotropy (all P > 0.05). Additionally, sensitivity studies validated the accuracy of the calculated causation. CONCLUSION: Inconsistent causative relationships between PUFAs and biliary tract diseases were revealed in our investigation. However, Omega-3 fatty acids were found to causally lower the risk of cholecystitis, cholelithiasis, and disorders of gallbladder, biliary tract and pancreas. Omega-3 fatty acids increased the risk of primary biliary cholangitis in a causative way. Omega-3 fatty acids with the risk of gallbladder cancer and primary sclerosing cholangitis did not have any statistically significant relationships. Omega-6 fatty acids were not significantly causally connected with the risk of cholelithiasis, gallbladder cancer, primary sclerosing cholangitis, or disorders of gallbladder, biliary tract and pancreas. However, they did play a causative role in lowering the risk of cholecystitis. Omega-6:Omega-3 fatty acids decreased the risk of primary biliary cholangitis but increased the risk of cholecystitis, gallstone disease, and disorders of gallbladder, biliary tract and pancreas. They had no effect on the risk of gallbladder cancer or primary sclerosing cholangitis. Therefore, additional research should be done to examine the probable processes mediating the link between polyunsaturated fatty acids and the risk of biliary tract diseases.


Assuntos
Doenças Biliares , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Ácidos Graxos Insaturados , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Doenças Biliares/genética
15.
Kidney Dis (Basel) ; 10(2): 97-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38751794

RESUMO

Introduction: Unsaturated fatty acids play an essential role in the progression of diabetic nephropathy (DN). However, previous studies were mainly focused on the role of individual unsaturated fatty acid. The serum unsaturated fatty acid patterns (FAPs) in patients with DN remain to be determined. Methods: A total of 135 patients with DN (DN group) and 322 patients with type II diabetes without nephropathy (non-DN group) were included in this study. Clinical data, serum levels of unsaturated fatty acids, and other laboratory indicators were collected. Multivariate logistic regression was applied to identify risk factors for serum unsaturated fatty acid level in both groups. Serum unsaturated fatty acids were subjected to factor analysis to identify distinct FAPs. Multivariable logistic regression was employed to assess the risk of DN associated with different serum FAPs. Results: After adjusting for confounders, three types of unsaturated fatty acid including C20:5 (eicosapentaenoic acid [EPA]), C22:6 (docosahexaenoic acid [DHA]), and C22:5 n-3 (docosapentaenoic acid n-3) were significantly associated with DN in the population. The odds ratios (ORs) (95% confidence interval [CI]) of DN were 0.583 (0.374, 0.908), 0.826 (0.716, 0.954), and 0.513 (0.298, 0.883), respectively. Factor analysis revealed five major FAPs, among which FAP2 (enriched with EPA and DHA) exhibited a significant inverse association with DN. In the multivariate-adjusted model, the OR (95% CI) was 0.678 (0.493, 0.933). Additionally, a combination of DHA and EPA enriched in FAP2 further decreased extracellular matrix production induced by transforming growth factor beta 1 in podocytes and tubular cells. Conclusions: Our findings suggest that FAP2 which is enriched with DHA and EPA is associated with a reduced risk of DN. This highlights the potential of targeting FAP2 for the patients with DN.

16.
J Allergy Clin Immunol Pract ; 12(7): 1695-1704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703820

RESUMO

Atopic dermatitis (AD) or eczema is a chronic inflammatory skin disease characterized by dry, itchy, and inflamed skin. We review emerging concepts and clinical evidence addressing the pathogenesis and prevention of AD. We examine several interventions ranging from skin barrier enhancement strategies to probiotics, prebiotics, and synbiotics; and conversely, from antimicrobial exposure to vitamin D and omega fatty acid supplementation; breastfeeding and hydrolyzed formula; and house dust mite avoidance and immunotherapy. We appraise the available evidence base within the context of the Grades of Recommendation, Assessment, Development, and Evaluation approach. We also contextualize our findings in relation to concepts relating AD and individual-patient allergic life trajectories versus a linear concept of the atopic march and provide insights into future knowledge gaps and clinical trial design considerations that must be addressed in forthcoming research. Finally, we provide implementation considerations to detect population-level differences in AD risk. Major international efforts are required to provide definitive evidence regarding what works and what does not for preventing AD.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/prevenção & controle , Animais , Probióticos/uso terapêutico , Prebióticos
17.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776363

RESUMO

Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.


In the realm of companion animal nutrition, the balance between the n-6 and n-3 fatty acids (FA) is important. The shared metabolic pathway of these two FA families and the respective signaling molecules produced have implications for the well-being of companion animals such as dogs, cats, and even horses. The n-6:n-3 FA ratio of the diet can directly influence inflammatory responses, disease management, and overall health. Given the prevalent use of n-6 FA-rich vegetable oils in both human and animal diets, there is a growing need to supplement these animals' diets with n-3 FA. While fish oils containing the long-chain n-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been the conventional choice, their overreliance is environmentally unsustainable. Plant-based oils abundant in the n-3 FA α-linolenic acid (ALA) such as flaxseed and camelina oils should be considered, especially given the health benefits of ALA that extend beyond its role as a precursor to EPA and DHA. This review examines the importance of n-3 FA and the n-6:n-3 FA ratio in companion animal diets on animal health while discussing environmentally sustainable alternatives to fish oil to supplement n-3 FA.


Assuntos
Ração Animal , Dieta , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Ácido alfa-Linolênico , Animais , Cães , Cavalos , Gatos , Ácidos Graxos Ômega-3/metabolismo , Ácido alfa-Linolênico/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ração Animal/análise , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Animal
18.
Front Nutr ; 11: 1338392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577156

RESUMO

Background: Diets rich in minimally processed plant-based foods are recommended to breast cancer patients, and some may have an interest in whole-food, plant-based (WFPB) diets that avoid animal-based foods, added fats, and refined sugars. Within WFPB diets, the intakes of isoflavones, omega-6 polyunsaturated fatty acids (n-6 PUFAs), and omega-3 polyunsaturated FAs (n-3 PUFAs), which have been discussed in reference to breast cancer outcomes, have not been well characterized. Methods: Women with stage IV breast cancer on stable therapy were randomized 2:1 into (1) a WFPB intervention (N = 21) or (2) usual care (N = 11) for 8 weeks. Three meals per day were provided. Outcomes presented here include dietary intake of isoflavones, n-3 and n-6- PUFAs, which were assessed using three-day food records at baseline and 8 weeks. Baseline and 8-week mean intake within groups were compared using the Wilcoxon signed-rank test and between control and intervention groups by a two-sample t-test. Results: The WFPB intervention participants increased their daily consumption of total isoflavones from a mean of 0.8 mg/day to 14.5 mg/day (p < 0.0001) and decreased the n-6:n-3 ratio of their diet from a mean of 9.3 to 3.7 (p < 0.0001). Within the WFPB group, linoleic acid (n-6 PUFA) consumption decreased by a mean of 3.8 g (p = 0.0095), from 12.8 g/day to 9.0 g/day; total n-3 PUFA consumption increased by a mean of 1.1 g (p = 0.0005), from 1.6 g/day to 2.7 g/day. Conclusion: Transitioning to a WFPB diet resulted in significantly increased isoflavone intake and decreased n-6:n-3 ratio in women with breast cancer.

19.
J Biol Chem ; 300(5): 107291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636661

RESUMO

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Assuntos
Ceramidas , Receptores de Adiponectina , Retina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Ceramidas/metabolismo , Retina/metabolismo , Retina/patologia , Camundongos Knockout , Ácidos Graxos Insaturados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética
20.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578269

RESUMO

Background: Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality. Methods: We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors. Results: Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15-38%) higher total mortality, 14% (95% CI, 0-31%) higher cancer mortality, and 31% (95% CI, 10-55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects. Conclusions: Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality. Funding: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Fatty acids play an essential role in health. Studies have shown that diets high in omega-3 fatty acids found in foods like fish, fish oil, flaxseed and walnuts may be beneficial. Yet some studies have raised concern that too many omega-6 fatty acids in Western diets rich in vegetable oils may be harmful. Some scientists have proposed that the balance of omega-3 and omega-6 in diets is vital to health. They hypothesize that a higher omega-6 to omega-3 fatty acids ratio is detrimental. But, proving that a higher ratio of omega-6 to omega-3 fatty acids is harmful has been difficult. Many studies have found conflicting results. Scientists have struggled to accurately measure fatty acid intake as tracking an individual's dietary intake is challenging and self-reported dietary intake may be incorrect. Additionally, scientists must follow individuals for many years to determine if a high ratio of omega-6 to omega-3 is linked with cancer, heart disease, or death. But, measuring circulating fatty acids in an individual's blood may offer an easier and more reliable approach to studying the health impacts of these vital nutrients. Zhang et al. show that people with higher ratios of omega-6 to omega-3 fatty acids in their blood are at greater risk of dying from cancer, heart disease, or any cause than those with lower ratios. The experiments measured omega-6 and omega-3 fatty acid levels in more than 85,000 participants in the UK Biobank who scientists followed for an average of about 13 years. Participants with the highest ratios of omega-6 to omega-3 fatty acids were 26% more likely to die of any cause, 14% more likely to die of cancer, and 31% more likely to die of heart disease than individuals with the lowest ratios. Individually, high levels of omega-6 fatty acids and high levels of omega-3 fatty acids were both associated with a lower risk of dying. But the protective effects of omega-3 were greater. For example, individuals with the highest levels of omega-6 fatty acids were 23% less likely to die of any cause. By comparison, those with the highest levels of omega-3s were 31% less likely to die. The stronger protection offered by high levels of omega-3s likely explains why having a high ratio of omega-6s to omega-3s was linked to harm. Both are protective. But the protection provided by omega-3s is more robust. The experiments support dietary interventions to raise omega-3 fatty acid levels and maintain a low omega-6 to omega-3 fatty acid ratio to prevent early deaths from cancer, heart disease or other causes. More research is needed to understand the impact of dietary fatty acid intake on other diseases and how genetics may influence the health impact of fatty acids.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Neoplasias , Humanos , Estudos de Coortes , Estudos Prospectivos , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Ácidos Graxos Ômega-6 , Neoplasias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA