Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dent Mater ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277487

RESUMO

BACKGROUND: This study presents a novel multi-technique approach that integrates micro-CT and optical photothermal infrared spectroscopy (O-PTIR) to evaluate polymerisation differences, so-called spatio-temporal polymerisation properties, between flowable and sculptable dental resin-based composites. METHODS: Ten commercially available dental composites were investigated, including flowable and sculptable counterparts from the same manufacturer. Eight parameters were evaluated: short-term polymerisation characteristics (degree of conversion after 5 min, maximum polymerisation rate, time to reach maximum polymerisation rate) was measured using ATR-FTIR with real-time monitoring; changes in the degree of conversion with depth were evaluated with O-PTIR, 3D visualisation of shrinkage patterns, overall volumetric shrinkage, depth-specific shrinkage, and porosity were measured using micro-CT; surface morphology with detailed measurements of elemental composition was characterised using SEM/EDX; light transmittance was analysed with a NIST-referenced spectrometer. RESULTS: The study found that the increase in filler weight and volume ratio reduced the degree of conversion and polymerisation shrinkage, while moderately influencing the maximum polymerisation rates. The time to reach maximum polymerisation rates and light transmittance were not dependent on the filler amount. O-PTIR assessed a depth-dependent decrease in the degree of conversion for both composite types, with flowable composites generally showing a greater decrease in the degree of conversion than sculptable composites, except for bulk-fill composites. Micro-CT scans showed significantly higher flowable shrinkage values than their sculptable counterparts, highlighting the performance differences between the two types of composites. CONCLUSIONS: The findings of this study have practical implications for the selection and use of dental composites. Flowable composites, despite their higher degrees of conversion and polymerisation rates, also exhibit higher volumetric shrinkage, which can be detrimental for clinical applications. The new measurement methods used in this study provide a comprehensive overview of the polymerisation behaviour of commercially available dental composites, offering valuable insights for material optimisation.

2.
Microbes Environ ; 38(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37853632

RESUMO

Infrared spectroscopy is used for the chemical characterization of prokaryotes. However, its application has been limited to cell aggregates and lipid extracts because of the relatively low spatial resolution of diffraction. We herein report optical photothermal infrared (O-PTIR) spectroscopy of prokaryotes for a domain-level diagnosis at the single-cell level. The technique provided infrared spectra of individual bacterial as well as archaeal cells, and the resulting aliphatic CH3/CH2 intensity ratios showed domain-specific signatures, which may reflect distinctive cellular lipid compositions; however, there was interference by other cellular components. These results suggest the potential of O-PTIR for a domain-level diagnosis of single prokaryotic cells in natural environments.


Assuntos
Lipídeos , Células Procarióticas , Espectrofotometria Infravermelho/métodos , Lipídeos/química
3.
J Phycol ; 59(5): 1064-1084, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37623312

RESUMO

Attenuated total reflection (ATR) microscope Fourier transform infrared (micro-FTIR) spectroscopy was used to investigate the dinosporin composition in the walls of modern, organic-walled dinoflagellate resting cysts (dinocysts). Variable cyst wall compositions were observed, which led to the erection of four spectrochemical groups, some with striking similarities to other resistant biomacromolecules such as sporopollenin and algaenan. Furthermore, possible proxies derivable from the spectrochemical composition of modern and fossil dinocysts were discussed. The color of the dinocyst walls was reflected in the spectral data. When comparing that color with a standard and the results of a series of bleaching experiments with oxidative agents, eumelanin was assigned as a likely pigment contributing to the observed color. Following this assignment, the role of eumelanin as an ultraviolet sunscreen in colored dinocysts was hypothesized, and its implications on the autofluorescence and morphological preservation of dinocysts were further discussed. Unlike what had previously been assumed, it was shown that micro-FTIR data from dinocysts cannot be used to unambiguously infer trophic affinities of their associated cells. Finally, using methods with high spatial resolutions (synchrotron transmission micro-FTIR and optical photothermal infrared spectroscopy), it was shown that dinocyst wall layers are chemically homogenous at the probed scales. This study fills a large knowledge gap in our understanding of the chemical nature of dinocyst walls and has nuanced certain assumptions and interpretations made in the past.

4.
Int J Pharm ; 632: 122563, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586629

RESUMO

The aim of this research was to chemically analyse the distribution of drugs and excipients in pharmaceutical dry powder inhalation (DPI) aerosol particles of various sizes in solid state. The conventional wet assay of the chemical composition of particles after collection in a cascade impactor lacks the capability to differentiate spatially resolved morphology and chemical composition of particles in complex DPI formulations. In this proof-of-concept study, we aim to demonstrate the feasibility of using optical photothermal infrared spectroscopy (O-PTIR) to characterize micro- to nano-scale chemical composition of size-segregated particles of pharmaceutical DPI formulations. These formulations were prepared by spray drying a solution or a suspension comprising an inhaled corticosteroid fluticasone propionate, a long-acting ß2-agonist salmeterol xinafoate, and excipient lactose. The active ingredients fluticasone propionate and salmeterol xinafoate are widely used for the treatment of asthma and chronic obstructive pulmonary disease. Spatially resolved O-PTIR spectra acquired from the particles collected from stages 1-7 of a Next Generation Impactor (NGI) for both formulations confirmed the presence of peaks related to fluticasone propionate (1746 cm-1, 1702 cm-1, 1661 cm-1 and 1612 cm-1), salmeterol xinafoate (1582 cm-1), and lactose (1080 cm-1). There was no significant difference in the drug to lactose peak ratio among various size fractions of particles spray dried from solution indicating a homogeneity in drug and lactose content in the aerosol formulation. In contrast, the suspension-spray dried formulation showed the drug content increased while the lactose content decreased in the particles collected down the NGI from stage 1 to stage 7, indicating heterogeneity in the ratio of drug-excipient distribution. The qualitative chemical compositions from O-PTIR were comparable to conventional wet chemical assays of various size fractions, indicating the suitability of O-PTIR to serve as a valuable analytical platform for screening the physicochemical properties of DPIs in solid state.


Assuntos
Excipientes , Lactose , Pós/química , Excipientes/química , Lactose/química , Química Farmacêutica/métodos , Aerossóis e Gotículas Respiratórios , Fluticasona/química , Xinafoato de Salmeterol/química , Administração por Inalação , Análise Espectral , Aerossóis/química , Tamanho da Partícula , Inaladores de Pó Seco/métodos
5.
Adv Sci (Weinh) ; 7(6): 1903004, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195099

RESUMO

Loss of memory during Alzheimer's disease (AD), a fatal neurodegenerative disorder, is associated with neuronal loss and the aggregation of amyloid proteins into neurotoxic ß-sheet enriched structures. However, the mechanism of amyloid protein aggregation is still not well understood due to many challenges when studying the endogenous amyloid structures in neurons or in brain tissue. Available methods either require chemical processing of the sample or may affect the amyloid protein structure itself. Therefore, new approaches, which allow studying molecular structures directly in neurons, are urgently needed. A novel approach is tested, based on label-free optical photothermal infrared super-resolution microspectroscopy, to study AD-related amyloid protein aggregation directly in the neuron at sub-micrometer resolution. Using this approach, amyloid protein aggregates are detected at the subcellular level, along the neurites and strikingly, in dendritic spines, which has not been possible until now. Here, a polymorphic nature of amyloid structures that exist in AD transgenic neurons is reported. Based on the findings of this work, it is suggested that structural polymorphism of amyloid proteins that occur already in neurons may trigger different mechanisms of AD progression.

6.
J Mol Struct ; 12102020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859444

RESUMO

Optical photothermal infrared (O-PTIR) and Raman spectroscopy and imaging was used to explore the spatial distributions of molecular constituents of a laminate sample consisting of the bioplastics, polyhydroxyalkanoate (PHA) and polylactic acid (PLA), near the interfacial boundary. Highly spatially resolved simultaneous IR and Raman spectra were sequentially collected at 100 nm increments along a line traversing the interface. The set of spectra were subjected to 2D-COS analysis to extract the detailed nature of the spatial distribution of the laminate constituents. It was revealed that the laminate is not a simple binary system of two non-interacting polymers, but consists of different constituents with more complex spatial distributions. Some portion of PLA seems to penetrate into the PHA layer. The crystallinity of PHA near the interface is reduced compared to the rest of the PHA layer. The result suggests the existence of some partial molecular mixing even for these seemingly immiscible polymer pairs. The mixing probably occurs at the segmental level confined to only several hundred nanometers of space at the interface. Such partial mixing may explain the high compatibility between the two bioplastics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA