Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.582
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39088644

RESUMO

Muscular efficiency during exercise has been used to interrogate aspects of human muscle energetics, including mitochondrial coupling and biomechanical efficiencies. Typically, assessments of muscular efficiency have involved graded exercises. Results of previous studies have been interpreted to indicate a decline in exercise efficiency with aging owing to decreased mitochondrial function. However, discrepancies in variables such as exercise stage duration, cycling cadence, and treadmill walking mechanics may have affected interpretations of results. Furthermore, recent data from our lab examining the ATP to oxygen ratio (P:O) in mitochondrial preparations isolated from NIA mouse skeletal muscle showed no change with aging. Thus, we hypothesized that Delta Efficiency (∆€) during steady-rate cycling exercise would not be altered in older healthy subjects compared to young counterparts regardless of biological sex or training status. Young (21-35 years) and older (60-80 years) men (n=21) and women (n=20) underwent continual, progressive leg cycle ergometer tests pedaling at 60 RPM for 3 stages (35, 60, 85 W) lasting 4 minutes. ∆€ was calculated as: (∆ Work Accomplished/∆ Energy Expended). Overall, cycling efficiencies were not significantly different in older compared to young subjects. Similarly, trained subjects did not exhibit significantly different exercise efficiency compared to untrained. Moreover, there were no differences between men and women. Hence, our results obtained on healthy young and older subjects are interpreted to mean that previous reports of decreased efficiency in older individuals were attributable to metabolic or biomechanical comorbidities, not aging per se.

2.
Mutat Res ; 829: 111875, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39098234

RESUMO

BACKGROUND: Prostate cancer (PCa), a prevalent malignancy worldwide, is frequently identified in advanced stages due to the absence of distinctive early symptoms, thereby culminating in the development of chemotherapy-induced drug resistance. Exploring novel resistance mechanisms and identifying new therapeutic agents can facilitate the advancement of more efficacious strategies for PCa treatment. METHODS: Bioinformatics analysis was employed to investigate the expression of FOXG1 in PCa tissues. Subsequently, qRT-PCR was utilized to validate FOXG1 mRNA expression levels in corresponding PCa cell lines. FOXG1 knockdown was performed, and cell proliferation was assessed using CCK-8 assays, while cell migration and invasion capabilities were evaluated through wound healing and Transwell assays. Western blot and Seahorse analyzer were used to measure oxidative phosphorylation (OXPHOS) levels. Additionally, to explore potential approaches to alleviate PCa drug resistance, this study assessed the impact of biologically active saikosaponin-d (SSd) on PCa malignant progression and resistance by regulating FOXG1 expression. RESULTS: FOXG1 exhibited high expression in PCa tissues and cell lines. Knockdown of FOXG1 inhibited the proliferation, migration, and invasion of PCa cells, while FOXG1 overexpression had the opposite effect and promoted OXPHOS levels. The addition of an OXPHOS inhibitor prevented this outcome. Finally, SSd was shown to suppress FOXG1 expression and reverse docetaxel resistance in PCa cells through the OXPHOS pathway. CONCLUSION: This work demonstrated that SSd mediated FOXG1 to reverse malignant progression and docetaxel resistance in PCa through OXPHOS.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39099426

RESUMO

The expansion of cancer cell mass in solid tumors generates a harsh environment characterized by dynamically varying levels of acidosis, hypoxia and nutrient deprivation. Because acidosis inhibits glycolytic metabolism and hypoxia inhibits oxidative phosphorylation, cancer cells that survive and grow in these environments must rewire their metabolism and develop a high degree of metabolic plasticity to meet their energetic and biosynthetic demands. Cancer cells frequently upregulate pathways enabling the uptake and utilization of lipids and other nutrients derived from dead or recruited stromal cells, and in particular lipid uptake is strongly enhanced in acidic microenvironments. The resulting lipid accumulation and increased reliance on ß-oxidation and mitochondrial metabolism increases susceptibility to oxidative stress, lipotoxicity and ferroptosis, in turn driving changes that may mitigate such risks. The spatially and temporally heterogeneous tumor microenvironment thus selects for invasive, metabolically flexible, and resilient cancer cells capable of exploiting their local conditions as well as of seeking out more favorable surroundings. This phenotype relies on the interplay between metabolism, acidosis and oncogenic mutations, driving metabolic signaling pathways such as peroxisome proliferator-activated receptors (PPARs). Understanding the particular vulnerabilities of such cells may uncover novel therapeutic liabilities of the most aggressive cancer cells.

4.
Adv Sci (Weinh) ; : e2405963, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120042

RESUMO

Protein arginine methyltransferase 3 (PRMT3) plays an important role in gene regulation and a variety of cellular functions, thus, being a long sought-after therapeutic target for human cancers. Although a few PRMT3 inhibitors are developed to prevent the catalytic activity of PRMT3, there is little success in removing the cellular levels of PRMT3-deposited ω-NG,NG-asymmetric dimethylarginine (ADMA) with small molecules. Moreover, the non-enzymatic functions of PRMT3 remain required to be clarified. Here, the development of a first-in-class MDM2-based PRMT3-targeted Proteolysis Targeting Chimeras (PROTACs) 11 that selectively reduced both PRMT3 protein and ADMA is reported. Importantly, 11 inhibited acute leukemia cell growth and is more effective than PRMT3 inhibitor SGC707. Mechanism study shows that 11 induced global gene expression changes, including the activation of intrinsic apoptosis and endoplasmic reticulum stress signaling pathways, and the downregulation of E2F, MYC, oxidative phosphorylation pathways. Significantly, the combination of 11 and glycolysis inhibitor 2-DG has a notable synergistic antiproliferative effect by further reducing ATP production and inducing intrinsic apoptosis, thus further highlighting the potential therapeutic value of targeted PRMT3 degradation. These data clearly demonstrated that degrader 11 is a powerful chemical tool for investigating PRMT3 protein functions.

5.
Pharmacol Res ; : 107346, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127263

RESUMO

Synovitis is characterized by a distinct metabolic profile featuring the accumulation of lactate, a byproduct of cellular metabolism within inflamed joints. This study reveals that the activation of the CD31 signal by lactate instigates a metabolic shift, specifically initiating endothelial cell autophagy. This adaptive process plays a pivotal role in fulfilling the augmented energy and biomolecule demands associated with the formation of new blood vessels in the synovium of Rheumatoid Arthritis (RA). Additionally, the amino acid substitutions in the CD31 cytoplasmic tail at the Y663F and Y686F sites of the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in Crispr/Cas9 transgenic mice alleviate RA. Mechanistically, this results in the downregulation of glycolysis and autophagy pathways. These findings significantly advance our understanding of potential therapeutic strategies for modulating these processes in synovitis and, potentially, other autoimmune diseases.

6.
Int J Biol Macromol ; 278(Pt 1): 134673, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142491

RESUMO

Charcot-Marie-Tooth type 2A (CMT2A) is a single-gene motor sensory neuropathy caused by Mfn2 mutation. It is generally believed that CMT2A involves mitochondrial fusion disruption. However, how Mfn2 mutation mediates the mitochondrial membrane fusion loss and its further pathogenic mechanisms remain unclear. Here, in vivo and in vitro mouse models harboring the Mfn2R364W, Mfn2G176S and Mfn2H165R mutations were constructed. Mitochondrial membrane fusion and fission proteins analysis showed that Mfn2R364W, Mfn2G176S, and Mfn2H165R/+ mutations maintain the expression of Mfn2, but promote Drp1 upregulation and Opa1 hydrolytic cleavage. In Mfn2H165R/H165R mutation, Mfn2, Drp1, and Opa1 all play a role in inducing mitochondrial fragmentation, and the mitochondrial aggregation is affected by Mfn2 loss. Further research into the pathogenesis of CMT2A showed these three mutations all induce mitochondria-mediated apoptosis, and mitochondrial oxidative phosphorylation damage. Overall, loss of overall fusion activity affects mitochondrial DNA (mtDNA) stability and causes mitochondrial loss and dysfunction, ultimately leading to CMT2A disease. Interestingly, the differences in the pathogenesis of CMT2A between Mfn2R364W, Mfn2G176S, Mfn2H165R/+ and Mfn2H165R/H165R mutations, including the distribution of Mfn2 and mitochondria, the expression of mitochondrial outer membrane-associated proteins (Bax, VDAC1 and AIF), and the enzyme activity of mitochondrial complex I, are related to the expression of Mfn2.

7.
Nutrients ; 16(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125400

RESUMO

BACKGROUND: The adverse effects of a Western diet on obesity and diabetes among reproductive-aged women pose a significant threat to the cardiovascular health of their offspring. Given the crucial role of glutathione metabolism and glutathione-related antioxidant defense systems in cardiovascular diseases through scavenging ROS and maintaining redox homeostasis, further exploration of their specific influence is imperative to develop therapeutic strategies for cardiomyopathy induced by a maternal Western diet. METHODS: We developed a prenatal maternal Western diet exposure model in C57/B6 mice to investigate cardiac morphology and function through histological analysis and echocardiography. RNA sequencing and analysis were utilized to elucidate the mechanisms underlying the impact of a maternal Western diet and N-acetylcysteine treatment on cardiomyopathy. Additionally, ELISAs, transmission electron microscopy, and flow cytometry were employed to assess the antioxidant defense system and mitochondrial ROS levels in progenitor cardiomyocytes. RESULTS: N-acetylcysteine significantly mitigated cardiomyocyte hypertrophy, myocardial interstitial fibrosis, collagen type I accumulation, and left ventricular remodeling induced by a maternal Western diet, particularly in male offspring. Furthermore, N-acetylcysteine reversed the increase in apoptosis and the increase in the ß/α-MyHC ratio in the myocardium of offspring that results from a maternal Western diet. RNA sequencing and GSEA revealed that the beneficial effects of N-acetylcysteine were linked to its ability to modulate oxidative phosphorylation pathways. Additionally, N-acetylcysteine treatment during pregnancy can markedly elevate glutathione levels, augment glutathione peroxidase (GPx) activity, and mitigate the accumulation of mitochondrial ROS caused by a maternal Western diet. CONCLUSIONS: N-acetylcysteine mitigated cardiomyopathy induced by a maternal Western diet by bolstering glutathione synthesis and enhancing GPx activity, thereby scavenging mitochondrial ROS and modulating oxidative phosphorylation pathways.


Assuntos
Acetilcisteína , Cardiomiopatias , Dieta Ocidental , Glutationa , Camundongos Endogâmicos C57BL , Animais , Feminino , Glutationa/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Gravidez , Camundongos , Acetilcisteína/farmacologia , Dieta Ocidental/efeitos adversos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Antioxidantes/farmacologia , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125916

RESUMO

Understanding the role of iron in ethanol-derived hepatic stress could help elucidate the efficacy of dietary or clinical interventions designed to minimize liver damage from chronic alcohol consumption. We hypothesized that normal levels of iron are involved in ethanol-derived liver damage and reduced dietary iron intake would lower the damage caused by ethanol. We used a pair-fed mouse model utilizing basal Lieber-DeCarli liquid diets for 22 weeks to test this hypothesis. In our mouse model, chronic ethanol exposure led to mild hepatic stress possibly characteristic of early-stage alcoholic liver disease, seen as increases in liver-to-body weight ratios. Dietary iron restriction caused a slight decrease in non-heme iron and ferritin (FeRL) expression while it increased transferrin receptor 1 (TfR1) expression without changing ferroportin 1 (FPN1) expression. It also elevated protein lysine acetylation to a more significant level than in ethanol-fed mice under normal dietary iron conditions. Interestingly, iron restriction led to an additional reduction in nicotinamide adenine dinucleotide (NAD+) and NADH levels. Consistent with this observation, the major mitochondrial NAD+-dependent deacetylase, NAD-dependent deacetylase sirtuin-3 (SIRT3), expression was significantly reduced causing increased protein lysine acetylation in ethanol-fed mice at normal and low-iron conditions. In addition, the detection of superoxide dismutase 1 and 2 levels (SOD1 and SOD2) and oxidative phosphorylation (OXPHOS) complex activities allowed us to evaluate the changes in antioxidant and energy metabolism regulated by ethanol consumption at normal and low-iron conditions. We observed that the ethanol-fed mice had mild liver damage associated with reduced energy and antioxidant metabolism. On the other hand, iron restriction may exacerbate certain activities of ethanol further, such as increased protein lysine acetylation and reduced antioxidant metabolism. This metabolic change may prove a barrier to the effectiveness of dietary reduction of iron intake as a preventative measure in chronic alcohol consumption.


Assuntos
Antioxidantes , Metabolismo Energético , Etanol , Animais , Camundongos , Acetilação/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Antioxidantes/metabolismo , Masculino , Ferro/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase/metabolismo , Lisina/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Receptores da Transferrina/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/genética , NAD/metabolismo , Ferritinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/etiologia
9.
ACS Nano ; 18(32): 21156-21170, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088743

RESUMO

How to address the resistance of cisplatin (CDDP) has always been a clinical challenge. The resistance mechanism of platinum-based drugs is very complex, including nuclear DNA damage repair, apoptosis escape, and tumor metabolism reprogramming. Tumor cells can switch between mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis and develop resistance to chemotherapy drugs through metabolic variability. In addition, due to the lack of histone protection and a relatively weak damage repair ability, mitochondrial DNA (mtDNA) is more susceptible to damage, which in turn affects mitochondrial OXPHOS and can become a potential target for platinum-based drugs. Therefore, mitochondria, as targets of anticancer drugs, have become a hot topic in tumor resistance research. This study constructed a self-assembled nanotargeted drug delivery system LND-SS-Pt-TPP/HA-CD. ß-Cyclodextrin-grafted hydronic acid (HA-CD)-encapsulated prodrug nanoparticles can target CD44 on the tumor surface and further deliver the prodrug to intracellular mitochondria through a triphenylphosphine group (TPP+). Disulfide bonds can be selectively degraded by glutathione (GSH) in mitochondria, releasing lonidamine (LND) and the cisplatin prodrug (Pt(IV)). Under the action of GSH and ascorbic acid, Pt(IV) is further reduced to cisplatin (Pt(II)). Cisplatin can cause mtDNA damage, induce mitochondrial dysfunction and mitophagy, and then affect mitochondrial OXPHOS. Meanwhile, LND can reduce the hexokinase II (HK II) level, induce destruction of mitochondria, and block energy supply by glycolysis inhibition. Ultimately, this self-assembled nano targeted delivery system can synergistically kill cisplatin-resistant lung cancer cells, which supplies an overcome cisplatin resistance choice via the disrupt mitochondria therapy.


Assuntos
Antineoplásicos , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Mitocôndrias , Pró-Fármacos , Cisplatino/farmacologia , Cisplatino/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Nanopartículas/química , Animais , Camundongos , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Reprogramação Metabólica
10.
World J Diabetes ; 15(6): 1178-1186, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38983827

RESUMO

Metformin is a common diabetes drug that may reduce lactate clearance by inhibiting mitochondrial oxidative phosphorylation, leading to metformin-associated lactic acidosis (MALA). As diabetes mellitus is a common chronic metabolic condition found in critically ill patients, pre-existing metformin use can often be found in critically ill patients admitted to the intensive care unit or the high dependency unit. The aim of this narrative mini review is therefore to update clinicians about MALA, and to provide a practical approach to its diagnosis and treatment. MALA in critically ill patients may be suspected in a patient who has received metformin and who has a high anion gap metabolic acidosis, and confirmed when lactate exceeds 5 mmol/L. Risk factors include those that reduce renal elimination of metformin (renal impairment from any cause, histamine-2 receptor antagonists, ribociclib) and excessive alcohol consumption (as ethanol oxidation consumes nicotinamide adenine dinucleotides that are also required for lactate metabolism). Treatment of MALA involves immediate cessation of metformin, supportive management, treating other concurrent causes of lactic acidosis like sepsis, and treating any coexisting diabetic ketoacidosis. Severe MALA requires extracorporeal removal of metformin with either intermittent hemodialysis or continuous kidney replacement therapy. The optimal time to restart metformin has not been well-studied. It is nonetheless reasonable to first ensure that lactic acidosis has resolved, and then recheck the kidney function post-recovery from critical illness, ensuring that the estimated glomerular filtration rate is 30 mL/min/1.73 m2 or better before restarting metformin.

11.
J Cell Physiol ; : e31367, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988031

RESUMO

Oxidative phosphorylation is becoming increasingly important in the induction and development of endometriosis. Recently, it has been reported that ring finger protein 43 (RNF43) is involved in the process of oxidative phosphorylation, but the mechanism remains unclear. Our investigation is to delve into the roles of RNF43 in endometriosis and elucidate the related mechanisms. We found RNF43 was downregulated in ectopic endometrial tissue and primary ectopic endometrial stromal cells (ECESCs). Knockdown of RNF43 enhanced cell viability and migration by activating oxidative phosphorylation in eutopic endometrial stromal cells (EUESCs), while overexpression of RNF43 led to the opposite results. Moreover, RNF43 reinforced the ubiquitination and degradation of NADH dehydrogenase Fe-S protein 1 (NDUFS1) by interacting with it. Likewise to RNF43 overexpression, NDUFS1 silencing inhibited cell viability, migration, and oxidative phosphorylation in ECESCs. NDUFS1 was a downstream target of RNF43, mediating its biological role in endometriosis. Interestingly, the expression and stability of RNF43 mRNA were regulated by the Methyltransferase-like 3 (METTL3)/IGF2BP2 m6A modification axis. The results of rat experiments showed decreased RNF43 expression and increased NDUFS1 expression in endometriosis rats, which was enhanced by METTL3 inhibition. Those observations indicated that m6A methylation-mediated RNF43 negatively affects viability and migration of endometrial stromal cells through regulating oxidative phosphorylation via NDUFS1. The discovery of METTL3/RNF43/NDUFS1 axis suggested promising therapeutic targets for endometriosis.

12.
Eur J Immunol ; : e2451032, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38993003

RESUMO

The impact of chronic exposure to type I interferons (IFN)-α2a, 2b, and ß on macrophage metabolism, intimately linked to macrophage function, is not well understood. This study assesses the nuanced host responses induced by type I IFN cytokines, offering insights into potential therapeutic approaches in diseases associated with these cytokines. Employing a combination of transcriptional profiling and real-time functional analysis, we delineated metabolic reprogramming in response to chronic IFN exposure. Our results reveal distinct transcriptional metabolic profiles between macrophages chronically exposed to IFN-α and IFN-ß. IFN-ß significantly diminishes the oxygen consumption rate and glycolytic proton extrusion rate in macrophages. Conversely, IFN-α2b decreased parameters of mitochondrial fitness and induced a shift toward glutamine oxidation. Assessing the ability of macrophages to induce glycolysis in response to antigenic stimuli (LPS and iH37Rv), we found that chronic exposure to all IFN subtypes limited glycolytic induction. This study addresses a critical oversight in the literature, where individual roles of IFN subtypes are frequently amalgamated and lack distinction. These findings not only provide novel insights into the divergent effects of IFN-α2a, α2b, and ß on macrophage metabolism but also highlight their potential implications for developing targeted therapeutic strategies.

13.
J Pharm Pharmacol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011997

RESUMO

OBJECTIVES: To investigate the effects and mechanism of curculigoside against poststroke depression (PSD). METHODS: In vivo, a PSD rat model was created by combining bilateral common carotid artery occlusion and chronic unpredictable mild stress stimulations. After 4-week modeling and intragastrically administration of curculigoside, the effects of curculigoside on behavior, hippocampal neurogenesis, and hippocampal mitochondrial oxidative phosphorylation (OxPhos) were investigated. In vitro, PSD-like primary neural stem cells (NSCs) model was established by oxygen-glucose deprivation/recovery (OGD/R) combing high-corticosterone (CORT) concentration, followed by treatment with curculigoside. The investigation subsequently examined the impact of curculigoside on mitochondrial OxPhos, proliferation, and differentiation of NSCs under OGD/R + CORT conditions. KEY FINDINGS: In vivo, PSD rats showed significantly depressive behaviors, dysfunctional neurogenesis in hippocampus, as well as decreased hippocampus adenosine triphosphate (ATP) levels, reduced electron transport chain complexes activity, and downregulates mitochondrial transcription factor A (TFAM) and PPAR-gamma coactivator 1 alpha (PGC-1α) expression in hippocampus. In vitro, OGD/R +CORT significantly injured the proliferation and differentiation, as well as impaired the mitochondrial OxPhos in NSCs. Curculigoside treatment was effective in improving these abnormal changes. CONCLUSION: Curculigoside may repair hippocampal neurogenesis in PSD rats by enhancing hippocampal mitochondrial OxPhos, and has shown a great potential for anti-PSD.

15.
J Cell Physiol ; : e31366, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958520

RESUMO

Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.

16.
Discov Oncol ; 15(1): 258, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960931

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is the most prevalent malignancies worldwide. Recently, oxidative phosphorylation (OXPHOS) has received extensive concern as an emerging target in antitumor therapy. However, the OXPHOS-involved underlying genes and clinical utilization in HCC remain worth exploring. The present research aimed to create an OXPHOS-relevant signature in HCC. PATIENTS AND METHODS: In this study, the prognostic signature genes linked with OXPHOS were identified, and prognostic models were built using least absolute shrinkage and selection operator (LASSO) cox regression analysis. Furthermore, the combination study of immune microenvironment and signature genes looked into the involvement of immune cells in signature-based genes in HCC. Following that, chemotherapeutic drug sensitivity and immunotherapy analysis was implemented to predict clinical efficacy in HCC patients. Finally, clinical samples were collected to measure the expression of OXPHOS-related signature genes. RESULTS: Following a series of screens, six prognostic signature genes related with OXPHOS were identified: MRPS23, MPV17, MAPK3, IGF2BP2, CDK5, and IDH2, on which a risk model was built. The findings revealed a significant drop in the survival rate of HCC patients as their risk score increased. Meanwhile, independent prognostic study demonstrated that the risk score could accurately identify HCC patients. Immuno-microenvironmental correlation research suggested that the prognostic characteristics could serve as a reference index for both immunotherapy and chemotherapy. Finally, RT-qPCR exhibited a trend in signature gene expression that was consistent with the results. CONCLUSION: In this study, a total of six prognostic genes associated with OXPHOS were selected and a prognostic model was constructed, providing an essential reference for the study of OXPHOS in HCC.

17.
Cancer Treat Rev ; 129: 102795, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38972133

RESUMO

Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.

18.
J Ginseng Res ; 48(4): 395-404, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036738

RESUMO

Background: Ginsenoside Rg1 (Rg1) is one of the main active components in Chinese medicines, Panax ginseng and Panax notoginseng. Research has shown that Rg1 has a protective effect on the cardiovascular system, including anti-myocardial ischemia-reperfusion injury, anti-apoptosis, and promotion of myocardial angiogenesis, suggesting it a potential cardiovascular agent. However, the protective mechanism involved is still not fully understood. Methods: Based on network pharmacology, ligand-based protein docking, proteomics, Western blot, protein recombination and spectroscopic analysis (UV-Vis and fluorescence spectra) techniques, potential targets and pathways for Rg1 against myocardial ischemia (MI) were screened and explored. Results: An important target set containing 19 proteins was constructed. Two target proteins with more favorable binding activity for Rg1 against MI were further identified by molecular docking, including mitogen-activated protein kinase 1 (MAPK1) and adenosine kinase (ADK). Meanwhile, Rg1 intervention on H9c2 cells injured by H2O2 showed an inhibitory oxidative phosphorylation (OXPHOS) pathway. The inhibition of Rg1 on MAPK1 and OXPHOS pathway was confirmed by Western blot assay. By protein recombination and spectroscopic analysis, the binding reaction between ADK and Rg1 was also evaluated. Conclusion: Rg1 can effectively alleviate cardiomyocytes oxidative stress injury via targeting MAPK1 and ADK, and inhibiting oxidative phosphorylation (OXPHOS) pathway. The present study provides scientific basis for the clinical application of the natural active ingredient, Rg1, and also gives rise to a methodological reference to the searching of action targets and pathways of other natural active ingredients.

19.
J Pineal Res ; 76(5): e12991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039850

RESUMO

Although rapid progression and a poor prognosis in influenza A virus (IAV) infection-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are frequently associated with metabolic energy disorders, the underlying mechanisms and rescue strategies remain unknown. We herein demonstrated that the level of resting energy expenditure increased significantly in IAV-induced AECOPD patients and that cellular energy exhaustion emerged earlier and more significantly in IAV-infected primary COPD bronchial epithelial (pDHBE) cells. The differentially expressed genes were enriched in the oxidative phosphorylation (OXPHOS) pathway; additionally, we consistently uncovered much earlier ATP exhaustion, more severe mitochondrial structural destruction and dysfunction, and OXPHOS impairment in IAV-inoculated pDHBE cells, and these changes were rescued by melatonin. The level of OMA1-dependent cleavage of OPA1 in the mitochondrial inner membrane and the shift in energy metabolism from OXPHOS to glycolysis were significantly increased in IAV-infected pDHBE cells; however, these changes were rescued by OMA1-siRNA or melatonin further treatment. Collectively, our data revealed that melatonin rescued IAV-induced cellular energy exhaustion via OMA1-OPA1-S to improve the clinical prognosis in COPD. This treatment may serve as a potential therapeutic agent for patients in which AECOPD is induced by IAV.


Assuntos
Metabolismo Energético , GTP Fosfo-Hidrolases , Vírus da Influenza A , Melatonina , Doença Pulmonar Obstrutiva Crônica , Humanos , Metabolismo Energético/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/metabolismo , Influenza Humana/tratamento farmacológico , Melatonina/farmacologia , Metaloendopeptidases , Fosforilação Oxidativa/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
20.
J Bone Miner Res ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030684

RESUMO

Maintenance of bone homeostasis and the balance between bone resorption and formation are crucial for maintaining skeletal integrity. This study sought to investigate the role of salt-inducible kinase 3 (SIK3), a key regulator in cellular energy metabolism, during the differentiation of osteoclasts. Despite osteoclasts being high energy-consuming cells essential for breaking down mineralized bone tissue, the specific function of SIK3 in this process remains unclear. To address this issue, we generated osteoclast-specific SIK3 conditional knockout mice and assessed the impact of SIK3 deletion on bone homeostasis. Our findings revealed that SIK3 conditional knockout mice exhibited increased bone mass and an osteopetrosis phenotype, suggesting a pivotal role for SIK3 in bone resorption. Moreover, we assessed the impact of pterosin B, a SIK3 inhibitor, on osteoclast differentiation. The treatment with pterosin B inhibited osteoclast differentiation, reduced the numbers of multinucleated osteoclasts, and suppressed resorption activity in vitro. Gene expression analysis demonstrated that SIK3 deletion and pterosin B treatment influence a common set of genes involved in osteoclast differentiation and bone resorption. Furthermore, pterosin B treatment altered intracellular metabolism, particularly affecting key metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation. These results provide valuable insights into the involvement of SIK3 in osteoclast differentiation and the molecular mechanisms underlying osteoclast function and bone diseases.


Osteoporosis is a disease that causes bones to become weak and fragile, increasing the risk of fractures especially in elderly. It is caused by an imbalance between the formation of new bone and the destruction of old bone. Cells called osteoclasts are responsible for breaking down old bone. Excessive osteoclast activity results in bone loss and osteoporosis. Our research has identified a LKB1-SIK3 pathway, which acts as an energy sensor in osteoclasts. We found that this pathway is activated when osteoclast activity is increased, and we were able to reduce osteoclast activity by genetically removing or inhibiting SIK3. These findings suggest that targeting the LKB1-SIK3 pathway may be a promising new approach for the treatment of osteoporosis. Developing drugs that inhibit SIK3 may slow bone loss and reduce the risk of fractures in osteoporotic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA