Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103272, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39047637

RESUMO

Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 µm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.

2.
Cells ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39056789

RESUMO

The apolipoprotein E4 (APOE4) allele represents the major genetic risk factor for Alzheimer's disease (AD). In contrast, APOE2 is known to lower the AD risk, while APOE3 is defined as risk neutral. APOE plays a prominent role in the bioenergetic homeostasis of the brain, and early-stage metabolic changes have been detected in the brains of AD patients. Although APOE is primarily expressed by astrocytes in the brain, neurons have also been shown as source for APOE. However, the distinct roles of the three APOE isoforms in neuronal energy homeostasis remain poorly understood. In this study, we generated pure human neurons (iN cells) from APOE-isogenic induced pluripotent stem cells (iPSCs), expressing either APOE2, APOE3, APOE4, or carrying an APOE knockout (KO) to investigate APOE isoform-specific effects on neuronal energy metabolism. We showed that endogenously produced APOE4 enhanced mitochondrial ATP production in APOE-isogenic iN cells but not in the corresponding iPS cell line. This effect neither correlated with the expression levels of mitochondrial fission or fusion proteins nor with the intracellular or secreted levels of APOE, which were similar for APOE2, APOE3, and APOE4 iN cells. ATP production and basal respiration in APOE-KO iN cells strongly differed from APOE4 and more closely resembled APOE2 and APOE3 iN cells, indicating a gain-of-function mechanism of APOE4 rather than a loss-of-function. Taken together, our findings in APOE isogenic iN cells reveal an APOE genotype-dependent and neuron-specific regulation of oxidative energy metabolism.


Assuntos
Apolipoproteína E4 , Metabolismo Energético , Células-Tronco Pluripotentes Induzidas , Mitocôndrias , Neurônios , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Neurônios/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Mitocôndrias/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Trifosfato de Adenosina/metabolismo , Diferenciação Celular
3.
J Inherit Metab Dis ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053894

RESUMO

Mitochondrial disorders are a group of clinically and biochemically heterogeneous genetic diseases within the group of inborn errors of metabolism. Primary mitochondrial diseases are mainly caused by defects in one or several components of the oxidative phosphorylation system (complexes I-V). Within these disorders, those associated with complex III deficiencies are the least common. However, thanks to a deeper knowledge about complex III biogenesis, improved clinical diagnosis and the implementation of next-generation sequencing techniques, the number of pathological variants identified in nuclear genes causing complex III deficiency has expanded significantly. This updated review summarizes the current knowledge concerning the genetic basis of complex III deficiency, and the main clinical features associated with these conditions.

4.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929174

RESUMO

Ten-eleven translocation 1 (TET1) is a methylcytosine dioxygenase involved in active DNA demethylation. In our previous study, we demonstrated that TET1 reprogrammed the ovarian cancer epigenome, increased stem properties, and activated various regulatory networks, including metabolic networks. However, the role of TET1 in cancer metabolism remains poorly understood. Herein, we uncovered a demethylated metabolic gene network, especially oxidative phosphorylation (OXPHOS). Contrary to the concept of the Warburg effect in cancer cells, TET1 increased energy production mainly using OXPHOS rather than using glycolysis. Notably, TET1 increased the mitochondrial mass and DNA copy number. TET1 also activated mitochondrial biogenesis genes and adenosine triphosphate production. However, the reactive oxygen species levels were surprisingly decreased. In addition, TET1 increased the basal and maximal respiratory capacities. In an analysis of tricarboxylic acid cycle metabolites, TET1 increased the levels of α-ketoglutarate, which is a coenzyme of TET1 dioxygenase and may provide a positive feedback loop to modify the epigenomic landscape. TET1 also increased the mitochondrial complex I activity. Moreover, the mitochondrial complex I inhibitor, which had synergistic effects with the casein kinase 2 inhibitor, affected ovarian cancer growth. Altogether, TET1-reprogrammed ovarian cancer stem cells shifted the energy source to OXPHOS, which suggested that metabolic intervention might be a novel strategy for ovarian cancer treatment.

5.
Cancer Sci ; 115(8): 2686-2700, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877783

RESUMO

Application of physical forces, ranging from ultrasound to electric fields, is recommended in various clinical practice guidelines, including those for treating cancers and bone fractures. However, the mechanistic details of such treatments are often inadequately understood, primarily due to the absence of comprehensive study models. In this study, we demonstrate that an alternating magnetic field (AMF) inherently possesses a direct anti-cancer effect by enhancing oxidative phosphorylation (OXPHOS) and thereby inducing metabolic reprogramming. We observed that the proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz. In contrast, this exposure did not affect normal human astrocytes (NHA). Additionally, in mouse models implanted with human GBM cells in the brain, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival. This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression. The anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger. Along with these observations, there was a decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR). This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Our results suggest that AMF exposure may offer a straightforward strategy to inhibit cancer cell growth by leveraging oxidative stress through metabolic reprogramming.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioblastoma , Magnetoterapia , Reprogramação Metabólica , Fosforilação Oxidativa , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Magnetoterapia/métodos , Campos Magnéticos , Reprogramação Metabólica/efeitos da radiação , Mitocôndrias/metabolismo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Function (Oxf) ; 5(3): zqae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706962

RESUMO

The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath's unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, [Formula: see text], or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs.


Assuntos
Trifosfato de Adenosina , Glicólise , Neoplasias , Efeito Warburg em Oncologia , Trifosfato de Adenosina/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Modelos Biológicos , Metabolismo Energético
7.
Cancers (Basel) ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730594

RESUMO

Oral cancer is the 16th most common malignant tumor worldwide. The risk of recurrence and mortality is high, and the survival rate is low over the following five years. Recent studies have shown that curcumin causes apoptosis in tumor cells by affecting FoF1-ATP synthase (ATP synthase) activity, which, in turn, hinders cell energy production, leading to a loss of cell viability. Additionally, irradiation of curcumin within cells can intensify its detrimental effects on cancer cell viability and proliferation (photodynamic therapy). We treated the OHSU-974 cell line, a model for human head and neck squamous cell carcinoma (HNSCC), and primary human fibroblasts. The treatment involved a 1 h exposure of cells to 0.1, 1.0, and 10 µM curcumin, followed or not by irradiation or the addition of the same concentration of pre-irradiated curcumin. Both instances involved a diode laser with a wavelength of 450 nm (0.25 W, 15 J, 60 s, 1 cm2, continuous wave mode). The treatment with non-irradiated 1 and 10 µM curcumin caused ATP synthase inhibition and a consequent reduction in the oxygen consumption rate (OCR) and the ATP/AMP ratio, which was associated with a decrement in lipid peroxidation accumulation and a slight increase in glutathione reductase and catalase activity. By contrast, 60 s curcumin irradiation with 0.25 W-450 nm caused a further oxidative phosphorylation (OxPhos) metabolism impairment that induced an uncoupling between respiration and energy production, leading to increased oxidative damage, a cellular growth and viability reduction, and a cell cycle block in the G1 phase. These effects appeared to be more evident when the curcumin was irradiated after cell incubation. Since cells belonging to the HNSCC microenvironment support tumor development, curcumin's effects have been analyzed on primary human fibroblasts, and a decrease in cell energy status has been observed with both irradiated and non-irradiated curcumin and an increase in oxidative lipid damage and a slowing of cell growth were observed when the curcumin was irradiated before or after cellular administration. Thus, although curcumin displays an anti-cancer role on OHSU-974 in its native form, photoactivation seems to enhance its effects, making it effective even at low dosages.

8.
BMC Ophthalmol ; 24(1): 204, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698303

RESUMO

BACKGROUND: Uveal melanoma (UVM) is a malignant intraocular tumor in adults. Targeting genes related to oxidative phosphorylation (OXPHOS) may play a role in anti-tumor therapy. However, the clinical significance of oxidative phosphorylation in UVM is unclear. METHOD: The 134 OXPHOS-related genes were obtained from the KEGG pathway, the TCGA UVM dataset contained 80 samples, served as the training set, while GSE22138 and GSE39717 was used as the validation set. LASSO regression was carried out to identify OXPHOS-related prognostic genes. The coefficients obtained from Cox multivariate regression analysis were used to calculate a risk score, which facilitated the construction of a prognostic model. Kaplan-Meier survival analysis, logrank test and ROC curve using the time "timeROC" package were conducted. The immune cell frequency in low- and high-risk group was analyzed through Cibersort tool. The specific genomic alterations were analyzed by "maftools" R package. The differential expressed genes between low- or high-risk group were analyzed and performed Gene Ontology (GO) and GSEA. Finally, we verified the function of CYC1 in UVM by gene silencing in vitro. RESULTS: A total of 9 OXPHOS-related prognostic genes were identified, including NDUFB1, NDUFB8, ATP12A, NDUFA3, CYC1, COX6B1, ATP6V1G2, ATP4B and NDUFB4. The UVM prognostic risk model was constructed based on the 9 OXPHOS-related prognostic genes. The prognosis of patients in the high-risk group was poorer than low-risk group. Besides, the ROC curve demonstrated that the area under the curve of the model for predicting the 1 to 5-year survival rate of UVM patients were all more than 0.88. External validation in GSE22138 and GSE39717 dataset revealed that these 9 genes could also be utilized to evaluate and predict the overall survival of patients with UVM. The risk score levels related to immune cell frequency and specific genomic alterations. The DEGs between the low- and high- risk group were enriched in tumor OXPHOS and immune related pathway. In vitro experiments, CYC1 silencing significantly inhibited UVM cell proliferation and invasion, induced cell apoptosis. CONCLUSION: In sum, a prognostic risk score model based on oxidative phosphorylation-related genes in UVM was developed to enhance understanding of the disease. This prognostic risk score model may help to find potential therapeutic targets for UVM patients. CYC1 acts as an oncogene role in UVM.


Assuntos
Biomarcadores Tumorais , Melanoma , Fosforilação Oxidativa , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/mortalidade , Melanoma/genética , Melanoma/metabolismo , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Curva ROC , Medição de Risco/métodos , Pessoa de Meia-Idade , Fatores de Risco , Perfilação da Expressão Gênica
9.
Hum Mol Genet ; 33(R1): R47-R52, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779773

RESUMO

The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.


Assuntos
DNA Mitocondrial , Mitocôndrias , Fosforilação Oxidativa , Biossíntese de Proteínas , Mitocôndrias/metabolismo , Mitocôndrias/genética , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Animais
10.
Biosystems ; 236: 105134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301737

RESUMO

The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics.


Assuntos
Trifosfato de Adenosina , Fosforilação Oxidativa , Animais , Trifosfato de Adenosina/metabolismo , Termodinâmica , Prótons , Física
11.
Mol Aspects Med ; 96: 101238, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38215610

RESUMO

Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid ß-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.


Assuntos
Glaucoma , Fosforilação Oxidativa , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Glaucoma/genética , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Ácidos Graxos/metabolismo
12.
Front Cell Dev Biol ; 11: 1328522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274274

RESUMO

Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.

13.
Bol. méd. Hosp. Infant. Méx ; 74(3): 175-180, May.-Jun. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-888613

RESUMO

Abstract: Background: Mitochondriopathies are multisystem diseases affecting the oxidative phosphorylation (OXPHOS) system. Skin fibroblasts are a good model for the study of these diseases. Fibroblasts with a complex IV mitochondriopathy were used to determine the molecular mechanism and the main affected functions in this disease. Methods: Skin fibroblast were grown to assure disease phenotype. Mitochondria were isolated from these cells and their proteome extracted for protein identification. Identified proteins were validated with the MitoMiner database. Results: Disease phenotype was corroborated on skin fibroblasts, which presented a complex IV defect. The mitochondrial proteome of these cells showed that the most affected proteins belonged to the OXPHOS system, mainly to the complexes that form supercomplexes or respirosomes (I, III, IV, and V). Defects in complex IV seemed to be due to assembly issues, which might prevent supercomplexes formation and efficient substrate channeling. It was also found that this mitochondriopathy affects other processes that are related to DNA genetic information flow (replication, transcription, and translation) as well as beta oxidation and tricarboxylic acid cycle. Conclusions: These data, as a whole, could be used for the better stratification of these diseases, as well as to optimize management and treatment options.


Resumen: Introducción: Las mitocondriopatías son enfermedades multisistémicas que afectan el funcionamiento de la fosforilación oxidativa (OXPHOS). Un buen modelo de estudio para estas enfermedades es el cultivo primario de fibroblastos. En este trabajo se utilizaron fibroblastos con mitocondriopatía del complejo IV para determinar cuáles son las principales funciones afectadas en esta enfermedad. Métodos: Se realizaron cultivos primarios de fibroblastos para corroborar el fenotipo de la enfermedad. Las mitocondrias se aislaron de estas células y se extrajo su proteoma para su identificación. Las proteínas identificadas se validaron con la base de datos de MitoMiner. Resultados: Los fibroblastos conservaron el fenotipo de la enfermedad que incluye un defecto del complejo IV. El proteoma mitocondrial de estas células mostró que las proteínas más afectadas pertenecen al sistema de OXPHOS, principalmente los complejos que forman supercomplejos o respirosomas (I, III, IV y V). El defecto en el complejo IV al parecer se debió a problemas de ensamblaje que pueden evitar la formación de los supercomplejos y la eficiente canalización de sustratos. También se observó que esta mitocondriopatía afecta otros procesos relacionados con el flujo de información genética del DNA (replicación, transcripción y traducción), así como con la beta oxidación y el ciclo de los ácidos tricarboxílicos (TCA). Conclusiones: En conjunto, estos datos podrían utilizarse para una mejor clasificación de estas enfermedades, así como para la optimización de las opciones de manejo y tratamiento.


Assuntos
Humanos , Deficiência de Citocromo-c Oxidase/patologia , Proteômica/métodos , Fibroblastos/patologia , Mitocôndrias/patologia , Fosforilação Oxidativa , DNA/genética , Proteínas/metabolismo , Células Cultivadas , Ciclo do Ácido Cítrico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA