Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(30): 34058-34064, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32623885

RESUMO

GaN-based UV light-emitting devices suffer from low efficiency. To mitigate this issue, we hybridized GaN nanowires (NWs) grown on Si substrates by plasma-assisted molecular beam epitaxy with solution-processed p-type MnO quantum dots (QDs) characterized by a wider band gap (∼5 eV) than that of GaN. Further investigations reveal that the photoluminescence intensity of the GaN NWs increases up to ∼3.9-fold (∼290%) after functionalizing them with p-MnO QDs, while the internal quantum efficiency is improved by ∼1.7-fold. Electron energy loss spectroscopy (EELS) incorporated into transmission electron microscopy reveals an increase in the density of states in QD-decorated NWs compared to the bare ones. The advanced optical and EELS analyses indicate that the energy transfer from the wider band gap p-MnO QDs to n-GaN NW can lead to substantial emission enhancement and greater radiative recombination contribution because of the good band alignment between MnO QDs and GaN NWs. This work provides valuable insights into an environmentally friendly strategy for improving UV device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA