Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 82, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812004

RESUMO

Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.


Assuntos
Autofagia , Transporte Axonal , Nervo Óptico , Animais , Transporte Axonal/fisiologia , Nervo Óptico/patologia , Nervo Óptico/metabolismo , Ratos , Autofagia/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Masculino , Axônios/patologia , Axônios/metabolismo , Degeneração Neural/patologia , Degeneração Neural/metabolismo , Ratos Sprague-Dawley , Feminino
2.
Cell Mol Life Sci ; 81(1): 218, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758395

RESUMO

The endocytic adaptor protein 2 (AP-2) complex binds dynactin as part of its noncanonical function, which is necessary for dynein-driven autophagosome transport along microtubules in neuronal axons. The absence of this AP-2-dependent transport causes neuronal morphology simplification and neurodegeneration. The mechanisms that lead to formation of the AP-2-dynactin complex have not been studied to date. However, the inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) enhances the transport of newly formed autophagosomes by influencing the biogenesis and protein interactions of Rab-interacting lysosomal protein (RILP), another dynein cargo adaptor. We tested effects of mTORC1 inhibition on interactions between the AP-2 and dynactin complexes, with a focus on their two essential subunits, AP-2ß and p150Glued. We found that the mTORC1 inhibitor rapamycin enhanced p150Glued-AP-2ß complex formation in both neurons and non-neuronal cells. Additional analysis revealed that the p150Glued-AP-2ß interaction was indirect and required integrity of the dynactin complex. In non-neuronal cells rapamycin-driven enhancement of the p150Glued-AP-2ß interaction also required the presence of cytoplasmic linker protein 170 (CLIP-170), the activation of autophagy, and an undisturbed endolysosomal system. The rapamycin-dependent p150Glued-AP-2ß interaction occurred on lysosomal-associated membrane protein 1 (Lamp-1)-positive organelles but without the need for autolysosome formation. Rapamycin treatment also increased the acidification and number of acidic organelles and increased speed of the long-distance retrograde movement of Lamp-1-positive organelles. Altogether, our results indicate that autophagy regulates the p150Glued-AP-2ß interaction, possibly to coordinate sufficient motor-adaptor complex availability for effective lysosome transport.


Assuntos
Autofagia , Complexo Dinactina , Lisossomos , Animais , Humanos , Camundongos , Complexo 2 de Proteínas Adaptadoras/metabolismo , Autofagossomos/metabolismo , Complexo Dinactina/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/metabolismo , Ligação Proteica , Sirolimo/farmacologia
3.
Elife ; 112022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36416224

RESUMO

As the only major retrograde transporter along microtubules, cytoplasmic dynein plays crucial roles in the intracellular transport of organelles and other cargoes. Central to the function of this motor protein complex is dynein intermediate chain (IC), which binds the three dimeric dynein light chains at multivalent sites, and dynactin p150Glued and nuclear distribution protein (NudE) at overlapping sites of its intrinsically disordered N-terminal domain. The disorder in IC has hindered cryo-electron microscopy and X-ray crystallography studies of its structure and interactions. Here we use a suite of biophysical methods to reveal how multivalent binding of the three light chains regulates IC interactions with p150Glued and NudE. Using IC from Chaetomium thermophilum, a tractable species to interrogate IC interactions, we identify a significant reduction in binding affinity of IC to p150Glued and a loss of binding to NudE for constructs containing the entire N-terminal domain as well as for full-length constructs when compared to the tight binding observed with short IC constructs. We attribute this difference to autoinhibition caused by long-range intramolecular interactions between the N-terminal single α-helix of IC, the common site for p150Glued, and NudE binding, and residues closer to the end of the N-terminal domain. Reconstitution of IC subcomplexes demonstrates that autoinhibition is differentially regulated by light chains binding, underscoring their importance both in assembly and organization of IC, and in selection between multiple binding partners at the same site.


Motor proteins are the freight trains of the cell, transporting large molecular cargo from one location to another using an array of 'roads' known as microtubules. These hollow tubes are oriented, with one extremity (the plus-end) growing faster than the other (the minus-end). While over 40 different motor proteins travel towards the plus-end of microtubules, just one is responsible for moving cargo in the opposite direction. This protein, called dynein, performs a wide range of functions which must be carefully regulated, often through changes in the shape and interactions of various dynein segments. The intermediate chain is one of the essential subunits that form dynein, and it acts as a binding site for a range of molecular actors. In particular, it connects the three other dynein subunits (known as the light chains) to the dynein heavy chain containing the motor domain. It also binds to two non-dynein proteins: NudE, which helps to organise microtubules, and the p150Glued region of dynactin, a protein required for dynein activity. Despite their distinct roles, p150Glued and NudE attach to the same region of the intermediate chain, a highly flexible 'unstructured' segment which is difficult to study. How the binding of p150Glued and NudE is regulated has therefore remained unsolved. In response, Jara et al. decided to investigate how the three dynein light chains may help to control interactions between the intermediate chain and non-dynein proteins. They used more stable versions of dynein, NudE and dynactin (from a fungus that grows at high temperatures) to produce the various subcomplexes formed by the intermediate chain, the three dynein light chains, and parts of p150Glued and NudE. A suite of biophysical techniques was applied to study these structures, as they are challenging to capture using traditional approaches. This revealed that the unstructured region of the intermediate chain can fold back on itself, bringing together its two extremities; such folding blocks the p150Glued and NudE binding site. This obstruction is cleared when the light chains bind to the intermediate chain, demonstrating how these three subunits can regulate dynein activity. In humans, mutations in dynein are associated with a range of serious neurological and muscular diseases. The work by Jara et al. brings new insight into the way this protein works; more importantly, it describes how to combine several biophysical techniques to study non-structured proteins, offering a blueprint that is likely to be relevant for a wide range of scientists.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Dineínas/metabolismo , Complexo Dinactina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Ligação Proteica
4.
ASN Neuro ; 14: 17590914211062765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35014548

RESUMO

Neuronal migration and dendritogenesis are dependent on dynamic changes to the microtubule (MT) network. Among various factors that regulate MT dynamics and stability, post-translational modifications (PTMs) of MTs play a critical role in conferring specificity of regulatory protein binding to MTs. Thus, it is important to understand the regulation of PTMs during brain development as multiple developmental processes are dependent on MTs. In this study, we identified that carboxypeptidase E (CPE) changes tubulin polyglutamylation, a major PTM in the brain, and we examine the impact of CPE-mediated changes to polyglutamylation on cortical neuron migration and dendrite morphology. We show, for the first time, that overexpression of CPE increases the level of polyglutamylated α-tubulin while knockdown decreases the level of polyglutamylation. We also demonstrate that CPE-mediated changes to polyglutamylation are dependent on the CPE zinc-binding motif and that this motif is necessary for CPE action on p150Glued localization. However, overexpression of a CPE mutant that does not increase MT glutamylation mimics the effects of overexpression of wild type CPE on dendrite branching. Furthermore, although overexpression of wild type CPE does not alter cortical neuron migration, overexpression of the mutant may act in a dominant-negative manner as it decreases the number of neurons that reach the cortical plate (CP), as we previously reported for CPE knockdown. Overall, our data suggest that CPE changes MT glutamylation and redistribution of p150Glued and that this function of CPE is independent of its role in shaping dendrite development but plays a partial role in regulating cortical neuron migration.


Assuntos
Microtúbulos , Tubulina (Proteína) , Carboxipeptidase H , Neurogênese , Neurônios
5.
Mol Brain ; 14(1): 14, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461576

RESUMO

Mitochondrial movement in neurons is finely regulated to meet the local demand for energy and calcium buffering. Elaborate transport machinery including motor complexes is required to deliver and localize mitochondria to appropriate positions. Defects in mitochondrial transport are associated with various neurological disorders without a detailed mechanistic information. In this study, we present evidence that dystrobrevin-binding protein 1 (dysbindin), a schizophrenia-associated factor, plays a critical role in axonal mitochondrial movement. We observed that mitochondrial movement was impaired in dysbindin knockout mouse neurons. Reduced mitochondrial motility caused by dysbindin deficiency decreased the density of mitochondria in the distal part of axons. Moreover, the transport and distribution of mitochondria were regulated by the association between dysbindin and p150glued. Furthermore, altered mitochondrial distribution in axons led to disrupted calcium dynamics, showing abnormal calcium influx in presynaptic terminals. These data collectively suggest that dysbindin forms a functional complex with p150glued that regulates axonal mitochondrial transport, thereby affecting presynaptic calcium homeostasis.


Assuntos
Axônios/metabolismo , Complexo Dinactina/metabolismo , Disbindina/metabolismo , Mitocôndrias/metabolismo , Esquizofrenia/metabolismo , Animais , Cálcio/metabolismo , Células HEK293 , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Modelos Biológicos , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica
6.
Development ; 148(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33462114

RESUMO

The microtubule motor cytoplasmic dynein 1 (dynein) and its essential activator dynactin have conserved roles in spindle assembly and positioning during female meiosis and mitosis, but their contribution to male meiosis remains poorly understood. Here, we characterize the G33S mutation in the C. elegans dynactin subunit DNC-1, which corresponds to G59S in human p150Glued that causes motor neuron disease. In spermatocytes, dnc-1(G33S) delays spindle assembly and penetrantly inhibits anaphase spindle elongation in meiosis I, which prevents the segregation of homologous chromosomes. By contrast, chromosomes segregate without errors in the early dnc-1(G33S) embryo. Deletion of the DNC-1 N-terminus shows that defective meiosis in dnc-1(G33S) spermatocytes is not due to the inability of DNC-1 to interact with microtubules. Instead, our results suggest that the DNC-1(G33S) protein, which is aggregation prone in vitro, is less stable in spermatocytes than the early embryo, resulting in different phenotypic severity in the two dividing tissues. Thus, the dnc-1(G33S) mutant reveals that dynein-dynactin drive meiotic chromosome segregation in spermatocytes and illustrates that the extent to which protein misfolding leads to loss of function can vary significantly between cell types.


Assuntos
Segregação de Cromossomos , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Espermatócitos/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Cromossomos , Dineínas do Citoplasma/metabolismo , Complexo Dinactina/genética , Feminino , Humanos , Masculino , Meiose , Mitose , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutação , Fuso Acromático/metabolismo
7.
J Cell Physiol ; 236(4): 2706-2724, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32869310

RESUMO

Septins play important roles in regulating development and differentiation. Septin 7 (SEPT7) is a crucial component in orchestrating the septin core complex into highly ordered filamentous structures. Here, we showed that genetic depletion of SEPT7 or treatment with forchlorfenuron (FCF; a compound known to affect septin filament assembly) led to reduced the S phase entry in cell models and zebrafish embryos. In addition to colocalizing with actin filaments, SEPT7 resided in the centrosome, and SEPT7 depletion led to aberrant mitotic spindle pole formation. This mitotic defect was rescued in SEPT7-deficient cells by wild-type SEPT7, suggesting that SEPT7 maintained mitotic spindle poles. In addition, we observed disorganized microtubule nucleation and reduced cell migration with SEPT7 depletion. Furthermore, SEPT7 formed a complex with and maintained the abundance of p150glued , the component of centriole subdistal appendages. Depletion of p150glued resulted in a phenotype reminiscent of SEPT7-deficient cells, and overexpression of p150glued reversed the defective phenotypes. Thus, SEPT7 is a centrosomal protein that maintains proper cell proliferation and microtubule array formation via maintaining the abundance of p150glued .


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Complexo Dinactina/metabolismo , Microtúbulos/metabolismo , Fase S , Septinas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Centrossomo/efeitos dos fármacos , Complexo Dinactina/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Fase S/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular , Septinas/genética , Transdução de Sinais , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Biochimie ; 177: 127-131, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32841682

RESUMO

A-kinase anchoring protein 350 (AKAP350) is a centrosomal/Golgi scaffold protein, critical for the regulation of microtubule dynamics. AKAP350 recruits end-binding protein 1 (EB1) to the centrosome in mitotic cells, ensuring proper spindle orientation in epithelial cells. AKAP350 also interacts with p150glued, the main component of the dynactin complex. In the present work, we found that AKAP350 localized p150glued to the spindle poles, facilitating p150glued/EB1 interaction at these structures. Our results further showed that the decrease in AKAP350 expression reduced p150glued localization at astral microtubules and impaired the elongation of astral microtubules during anaphase. Overall, this study provides mechanistic data on how microtubule regulatory proteins gather to define microtubule dynamics in mitotic cells.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Complexo Dinactina/fisiologia , Polos do Fuso/metabolismo , Animais , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cães , Células Madin Darby de Rim Canino , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Polos do Fuso/ultraestrutura
9.
Parkinsonism Relat Disord ; 77: 110-113, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32712562

RESUMO

INTRODUCTION: Perry syndrome, also recognized as Perry disease, is a rare autosomal dominant disorder characterized by midlife-onset atypical parkinsonism, apathy or depression, respiratory failure and weight loss caused by a mutation in the Dynactin (DCTN1) gene. CASE DESCRIPTION: A fifty-six years-old adopted male presented with atypical parkinsonism with bradykinesia and postural instability, apathy, weight loss, and recurrent respiratory failure due to central hypoventilation requiring tracheostomy. METHODS AND RESULTS: Clinical workup revealed a novel DCTN1 p.Tyr78His variant. Using bioinformatic protein structure modeling, we compare our patient's variant to known DCTN1 mutations and predict protein stability of each variant at the CAP-Gly domain of p150Glued. All eight variants causing Perry syndrome, as well as Tyr78His, are located at site expected to interact with MAPRE1 tail and are predicted to be destabilizing. Variants causing atypical parkinsonism with incomplete Perry syndrome phenotype (K56R and K68E) are not significantly destabilizing in silico. CONCLUSION: We propose p.Tyr78His as the ninth pathogenic DCTN1 variant causing Perry syndrome. Bioinformatic protein modeling may provide additional window to understand and interpret DCTN1 variants, as we observed non-destabilizing variants to have different phenotype than destabilizing variants.


Assuntos
Complexo Dinactina/genética , Hipoventilação/genética , Mutação/genética , Transtornos Parkinsonianos/genética , Depressão/complicações , Depressão/diagnóstico , Depressão/genética , Humanos , Hipoventilação/complicações , Hipoventilação/diagnóstico , Hipoventilação/patologia , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico , Fenótipo
10.
Genes (Basel) ; 11(4)2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325768

RESUMO

A novel cosegregating splice site variant in the Dynactin-1 (DCTN1) gene was discovered by Next Generation Sequencing (NGS) in a family with a history of bipolar disorder (BD) and major depressive diagnosis (MDD). Psychiatric illness in this family follows an autosomal dominant pattern. DCTN1 codes for the largest dynactin subunit, namely p150Glued, which plays an essential role in retrograde axonal transport and in neuronal autophagy. A GT→TT transversion in the DCTN1 gene, uncovered in the present work, is predicted to disrupt the invariant canonical splice donor site IVS22 + 1G > T and result in intron retention and a premature termination codon (PTC). Thus, this splice site variant is predicted to trigger RNA nonsense-mediated decay (NMD) and/or result in a C-terminal truncated p150Glued protein (ct-p150Glued), thereby negatively impacting retrograde axonal transport and neuronal autophagy. BD prophylactic medications, and most antipsychotics and antidepressants, are known to enhance neuronal autophagy. This variant is analogous to the dominant-negative GLUED Gl1 mutation in Drosophila, which is responsible for a neurodegenerative phenotype. The newly identified variant may reflect an autosomal dominant cause of psychiatric pathology in this affected family. Factors that affect alternative splicing of the DCTN1 gene, leading to NMD and/or ct-p150Glued, may be of fundamental importance in contributing to our understanding of the etiology of BD as well as MDD.


Assuntos
Transtorno Bipolar/patologia , Complexo Dinactina/genética , Mutação , Sítios de Splice de RNA , Transtorno Bipolar/etiologia , Feminino , Humanos , Masculino , Linhagem
11.
Cell Biol Int ; 43(7): 749-759, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30958636

RESUMO

Microtubule (MT) protein preparations often contain components of the translation machinery, including ribosome proteins. To understand the biological meaning of it we studied the interaction of ribosomal protein RPL22e with the MT. We found that bacteria expressed purified RPL22e-GFP-6His did co-sediment with brain tubulin MTs with 1.3 µM dissociation coefficient. Such a KD is comparable to some specific MT-associated proteins. Distinct in vitro interaction of RPL22e-GFP with MTs was also observed by TIRF microscopy. In real-time assay, RPL22e-GFP molecules stayed bound to MTs for several seconds, and 15% of them demonstrated random-walk along MTs with diffusion coefficient 0.03 µ2 /s. Deletion of basic areas of RPL22e did not have an impact on KD , and deletion of acidic tail slightly increased association with MTs. Interestingly, the deletion of acidic tail increased diffusion coefficient as well. The interaction of RPL22e with MTs is hardly noticeable in vivo in cultured cells, probably since a significant part of the protein is incorporated into the ribosomes. The mobility of ribosomal protein on the MTs probably prevents its interfering with MT-dependent transport and could ameliorate its transport to the nucleus.


Assuntos
Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Bovinos , Chlorocebus aethiops , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/química , Células Vero
12.
Neurosci Lett ; 690: 181-187, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30366015

RESUMO

Dynein-dynactin has an indispensable role in autophagy and p150glued is the largest component of the dynactin complex. Here, we characterized the effects of knockdown (KD) of endogenous p150glued and of the pathogenic mutation of p150glued found in autosomal dominant p150glued-associated disorders [hereditary motor neuronopathy with vocal paresis (HMN7B) and Perry syndrome] on autophagy. Overexpression of the p150glued pathogenic mutant or siRNA KD of p150glued promoted the localization of lysosomes at the cell periphery and increased the number of autophagosomes, suggesting partial blockage of autophagic flux. Surprisingly, although autophagosomes and lysosomes were redistributed predominantly to the cell periphery in p150glued-KD cells, the autolysosome formation ratio was preserved. However, under autophagy activation conditions induced by starvation, the ratio of autophagosome-lysosome fusion in p150glued-KD cells was decreased in the early phase. Our data demonstrate that functional loss of p150glued may cause autophagic insufficiency, which may be associated with the pathogenesis of p150glued-associated disorders.


Assuntos
Autofagossomos/metabolismo , Complexo Dinactina/metabolismo , Lisossomos/metabolismo , Linhagem Celular Tumoral , Complexo Dinactina/genética , Técnicas de Silenciamento de Genes , Humanos , Mutação/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/farmacologia , Regulação para Cima
13.
J Cell Physiol ; 234(7): 10445-10457, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30417365

RESUMO

Chloroquine (CQ) is an antimalaria drug that has been used in clinical practice for several decades. One serious complication of CQ treatment is the macular retinopathy caused by the disruption of the retinal pigmented epithelium, leading to vision loss. Little is known about how CQ affects retinal pigmented epithelium. In this study, we found that cell proliferation was reduced by CQ treatment in time and dose-dependent manners. No obvious cell death was detected; however, what was observed instead was G0/G1 arrest during which primary cilium started to grow in the presence of CQ. Pharmacological inhibition of primary cilium formation led to a reduction of cell viability suggesting that CQ-induced primary cilium protected cells from death. In addition to cell growth, with the CQ treatment the retina pigmented epithelium (RPE) cells less flattened with the spindle-like protrusion. When checking the microtubule networks, the microtubule nucleation activity was disrupted in the presence of CQ. The level of p150 glued , the largest subunit of dynactin, was reduced in CQ-treated RPE1 cells, and depletion of p150 glued resulted in a phenotype reminiscent of CQ-treated cells. Thus, CQ treatment reduced the expression of p150 glued , leading to reduced S phase entry and defective microtubule nucleation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Proteínas Quinases/metabolismo , Retina/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Complexo Dinactina/metabolismo , Células Epiteliais/metabolismo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Retina/metabolismo
14.
Small GTPases ; 10(2): 138-145, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-28103137

RESUMO

In mammals, the C-terminal tyrosine residue of α-tubulin is subjected to removal/re-addition cycles resulting in tyrosinated microtubules and detyrosinated Glu-microtubules. CLIP170 and its yeast ortholog (Bik1) interact weakly with Glu-microtubules. Recently, we described a Microtubule- Rho1- and Bik1-dependent mechanism involved in Snc1 routing. Here, we further show a contribution of the yeast p150Glued ortholog (Nip100) in Snc1 trafficking. Both CLIP170 and p150Glued are CAP-Gly-containing proteins that belong to the microtubule +end-tracking protein family (known as +Tips). We discuss the +Tips-dependent role of microtubules in trafficking, the role of CAP-Gly proteins as possible molecular links between microtubules and vesicles, as well as the contribution of the Rho1-GTPase to the regulation of the +Tips repertoire and the partners associated with microtubules.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Transporte Biológico , Humanos
15.
Dev Cell ; 46(3): 376-387.e7, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30086304

RESUMO

During development, neurons undergo apoptosis if they do not receive adequate trophic support from tissues they innervate or when detrimental factors activate the p75 neurotrophin receptor (p75NTR) at their axon ends. Trophic factor deprivation (TFD) or activation of p75NTR in distal axons results in a retrograde degenerative signal. However, the nature of this signal and the regulation of its transport are poorly understood. Here, we identify p75NTR intracellular domain (ICD) and histone deacetylase 1 (HDAC1) as part of a retrograde pro-apoptotic signal generated in response to TFD or ligand binding to p75NTR in sympathetic neurons. We report an unconventional function of HDAC1 in retrograde transport of a degenerative signal and its constitutive presence in sympathetic axons. HDAC1 deacetylates dynactin subunit p150Glued, which enhances its interaction with dynein. These findings define p75NTR ICD as a retrograde degenerative signal and reveal p150Glued deacetylation as a unique mechanism regulating axonal transport.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Complexo Dinactina/metabolismo , Histona Desacetilase 1/metabolismo , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/metabolismo
16.
Biochem Biophys Res Commun ; 503(4): 2619-2624, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30100068

RESUMO

Intracellular trafficking is a tightly regulated cellular process, mediated in part by Rab GTPases and their corresponding effector proteins. Viruses have evolved mechanisms to hijack these processes to promote their lifecycles. Here we describe a mechanism by which cleavage of the Rab7 adaptor protein, RILP (Rab interacting lysosomal protein) is induced by viral infection. We report that RILP is directly cleaved by caspase-1 and we have identified a novel caspase-1 recognition site at aspartic acid 75 within the RILP sequence. Alanine substitution at D75 blocks caspase-1-mediated RILP cleavage. Full-length RILP localizes in a tight vesicular structure near the perinuclear region while the cleaved form of RILP re-distributes throughout the cytoplasm. However, cleavage alone was insufficient to re-localize RILP to the cellular periphery and re-localization required specific phosphorylation events near the caspase-1 recognition site. The combination of cleavage and phosphorylation were both needed for release from the dynein component p150Glued and redistribution of CD63+ve intracellular vesicles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Caspase 1/genética , Complexo Dinactina/genética , Tetraspanina 30/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Transporte Biológico , Caspase 1/metabolismo , Vesículas Citoplasmáticas/química , Complexo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Mutação , Fosforilação , Proteólise , Transdução de Sinais , Tetraspanina 30/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
17.
Mol Neurodegener ; 13(1): 10, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490687

RESUMO

BACKGROUND: Dynactin p150Glued, the largest subunit of the dynactin macromolecular complex, binds to both microtubules and tubulin dimers through the N-terminal cytoskeleton-associated protein and glycine-rich (CAP-Gly) and basic domains, and serves as an anti-catastrophe factor in stabilizing microtubules in neurons. P150Glued also initiates dynein-mediated axonal retrograde transport. Multiple missense mutations at the CAP-Gly domain of p150Glued are associated with motor neuron diseases and other neurodegenerative disorders, further supporting the importance of microtubule domains (MTBDs) in p150Glued functions. However, most functional studies were performed in vitro. Whether p150Glued is required for neuronal function and survival in vivo is unknown. METHODS: Using Cre-loxP genetic manipulation, we first generated a line of p150Glued knock-in mice by inserting two LoxP sites flanking the MTBD-coding exons 2 to 4 of p150Glued-encoding Dctn1 gene (Dctn1LoxP/), and then crossbred the resulting Dctn1LoxP/ mice with Thy1-Cre mice to generate the bigenic p150Glued (Dctn1LoxP/LoxP; Thy1-Cre) conditional knockout (cKO) mice for the downstream motor behavioral and neuropathological studies. RESULTS: P150Glued expression was completely abolished in Cre-expressing postnatal neurons, including corticospinal motor neurons (CSMNs) and spinal motor neurons (SMNs), while the MTBD-truncated forms remained. P150Glued ablation did not affect the formation of dynein/dynactin complex in neurons. The p150Glued cKO mice did not show any obvious developmental phenotypes, but exhibited impairments in motor coordination and rearing after 12 months of age. Around 20% loss of SMNs was found in the lumbar spinal cord of 18-month-old cKO mice, in company with increased gliosis, neuromuscular junction (NMJ) disintegration and muscle atrophy. By contrast, no obvious degeneration of CSMNs, striatal neurons, midbrain dopaminergic neurons, cerebellar granule cells or Purkinje cells was observed. Abnormal accumulation of acetylated α-tubulin, and autophagosome/lysosome proteins was found in the SMNs of aged cKO mice. Additionally, the total and cell surface levels of glutamate receptors were also substantially elevated in the p150Glued-depleted spinal neurons, in correlation with increased vulnerability to excitotoxicity. CONCLUSION: Overall, our findings demonstrate that p150Glued is particularly required to maintain the function and survival of SMNs during aging. P150Glued may exert its protective function through regulating the transportation of autophagosomes, lysosomes, and postsynaptic glutamate receptors in neurons.


Assuntos
Envelhecimento/patologia , Complexo Dinactina/deficiência , Neurônios Motores/patologia , Degeneração Neural/patologia , Envelhecimento/metabolismo , Animais , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo
18.
Oncotarget ; 8(6): 9858-9867, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28039481

RESUMO

Phosphorylation of end-binding protein 1 (EB1), a key member of microtubule plus end-tracking proteins (+TIPs), by apoptosis signal-regulating kinase 1 (ASK1) has been demonstrated to promote the stability of astral microtubules during mitosis by stimulating the binding of EB1 to microtubule plus ends. However, the roles of other members of the +TIPs family in ASK1/EB1-mediated regulation of astral microtubules are unknown. Herein, we show that ASK1-mediated phosphorylation of EB1 enhances the localization of cytoplasmic linker protein 170 (CLIP-170) and p150glued to the plus ends of astral microtubules. Depletion of ASK1 or expression of phospho-deficient or phospho-mimetic EB1 mutants results in changes in the levels of plus-end localized CLIP-170 or p150glued. Mechanistic studies reveal that EB1 phosphorylation promotes its interactions with CLIP-170 and p150glued, thereby recruiting these +TIPs to microtubules. Structural analysis suggests that serine-40 is the primary phosphorylation site on EB1 that exerts these effects. Together, these findings provide novel insight into the molecular mechanisms that regulate the interactions of EB1 with other +TIPs.


Assuntos
Complexo Dinactina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias do Colo do Útero/metabolismo , Feminino , Células HeLa , Humanos , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/patologia , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Interferência de RNA , Transdução de Sinais , Relação Estrutura-Atividade , Transfecção , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
19.
Parkinsonism Relat Disord ; 28: 56-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27132499

RESUMO

INTRODUCTION: Mutations in dynactin DCTN1 (p150(glued)) have previously been linked to familial motor neuron disease or Perry syndrome (PS) consisting of depression, parkinsonism and hypoventilation. METHODS: We sequenced DCTN1 in 636 Caucasian patients with parkinsonism (Parkinson's disease and Parkinson-plus syndromes) and 508 healthy controls. Variants (MAF < 0.01) were subsequently genotyped in Caucasian (1360 cases and 1009 controls) and Asian cohorts (1046 cases and 830 controls), and the functional implications of pathogenic variants were assessed. RESULTS: We identified 17 rare variants leading to non-synonymous amino-acid substitutions. Four of the variants were only observed in control subjects, four in both cases and controls and the remaining nine in cases only. One of the variants, DCTN1 p.K56R, was present in two patients with progressive supranuclear palsy (PSP) with a shared minimal 2.2 Mb haplotype. Both subjects have parkinsonism as the most prominent symptom with abnormal ocular movements, moderate cognitive impairment and little to no l-dopa response. Neither subject presents with depression, central hypoventilation or weight loss. For one of the subjects MRI shows symmetrical atrophy of temporal and frontoparietal lobes. In HEK293 cells mutant p150(glued) (p.K56R) shows less affinity for microtubules than wild-type, with a more diffuse cytoplasmic distribution. CONCLUSIONS: We have identified DCTN1 p.K56R in patients with PSP. This variant is immediately adjacent to the N-terminal p150(glued) 'CAP-Gly' domain, affects a highly conserved amino acid and alters the protein's affinity to microtubules and its cytoplasmic distribution.


Assuntos
Complexo Dinactina/genética , Transtornos Parkinsonianos/genética , Paralisia Supranuclear Progressiva/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/genética , Fenótipo , Paralisia Supranuclear Progressiva/fisiopatologia , Adulto Jovem
20.
J Cell Biochem ; 116(9): 2049-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25774020

RESUMO

p150(glued) is the largest subunit of dynactin protein complex, through which cargo vesicles link to the microtubule minus-end directed motor protein dynein. In addition, p150(glued) also locates in the mother centriole where it organizes the subdistal appendage. The components of appendage are dynamically regulated throughout the cell cycle stages, but it is still unclear whether the centrosomal residency of p150(glued) correlated with cell cycle progression. Here we found that p150(glued) was located in the mother centriole during G1/S stage and its centrosomal residency was independent of microtubule transportation. However, the centrosomal p150(glued) became blurred at G2/M phase and this event was not regulated by its phosphorylation. Entering into mitosis, p150(glued) was robustly enriched in the mitotic spindle nearby the spindle poles but not in the centrosome. During serum starvation (G0 stage), p150(glued) appeared at the base of primary cilium and its depletion attenuated starvation-induced primary cilium formation. We also checked its role in the maintenance of centrosome homeostasis and configuration, and found depletion of p150(glued) did not induce centrosome amplification or splitting but inhibited U2OS cell growth. G1 arrest and reduced EdU incorporation were observed in p150(glued) deficient U2OS cells. In addition, cyclin E was downregulated following p150(glued) depletion. The p53/p21 signaling was activated indicating that CDKs were inactivated. The reduced cell growth was ameliorated in the p150(glued) depleted cells when treated with p53 inhibitor. Thus, we have identified the centrosomal targeting of p150(glued) in distinct cell cycle stage and uncovered its role in controlling G1/S transition.


Assuntos
Ciclo Celular , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Linhagem Celular , Ciclina E/metabolismo , Complexo Dinactina , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilação , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA