Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 96(4): 1623-1638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007650

RESUMO

BACKGROUND: The cerebrospinal fluid (CSF) levels of tau phosphorylated at threonine 217 (p217tau) or 181 (p181tau), and neurofilament light chain (NfL) are definite biomarkers of tauopathy and neurodegeneration in Alzheimer's disease (AD). OBJECTIVE: To validate their utility in excluding other neurological diseases and age-related changes in clinical settings. METHODS: We developed monoclonal antibodies against p217tau and NfL, established novel ELISAs, and analyzed 170 CSF samples from patients with AD or other neurological diseases. RESULTS: In AD, p217tau is a more specific and abundant CSF component than p181tau. However, CSF NfL levels increase age-dependently and to a greater extent in central and peripheral nervous diseases than in AD. CONCLUSIONS: CSF p217tau correlates better with AD neurodegeneration than other tau-related biomarkers and the major phosphorylated tau species. The clinical usage of NfL as a neurodegeneration biomarker in AD requires exclusion of various central and peripheral neurological diseases.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Filamentos Intermediários , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
2.
Alzheimers Dement (Amst) ; 13(1): e12204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095436

RESUMO

INTRODUCTION: Diagnosis of Alzheimer's disease (AD) based on amyloid beta (A), pathologic tau (T), and neurodegeneration (N) biomarkers in peripheral fluids promises to accelerate clinical trials and intercept disease earlier. METHODS: Qualification of a Simoa plasma p217+tau assay was performed, followed by clinical utility evaluation in a cohort of 227 subjects with broad A and T spectrum. RESULTS: The p217+tau plasma assay was accurate, precise, dilution linear, and highly sensitive. All measured samples were within linear range of the assay, presented higher concentration in AD versus healthy controls (P < .0001), and plasma and cerebrospinal fluid levels correlated (r2 = 0.35). The plasma p217+tau results were predictive of central T and A status (area under the curve = 0.90 and 0.90, respectively) with low false +/- rates. DISCUSSION: The assay described here exhibits good technical performance and shows potential as a highly accurate peripheral biomarker for A or T status in AD and cognitively normal subjects.

3.
Am J Primatol ; 83(11): e23254, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33960505

RESUMO

Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.


Assuntos
Doença de Alzheimer , Doenças dos Roedores , Envelhecimento , Doença de Alzheimer/etiologia , Animais , Encéfalo , Modelos Animais de Doenças , Camundongos , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA