RESUMO
Gene therapy is one of the most potential therapeutic approaches in direct and specific regulation of biological functions of macrophages at the gene level for efficient cell therapy. However, the delivery of genetic material to macrophages is extremely challenging, because of low stability, specificity and inability of therapeutic genes to efficiently enter the cells. Here, we present a method that uses the hybrid electrospun architectures based on gelatin-alginate decorated with carboxylated graphene oxide (HAG/G) as efficient substrate for loading and in vitro local and controlled delivery of plasmid DNA (pDNA) to macrophages as an alternative to systemic gene delivery carriers. Polyethyleneimine (PEI) is employed to assemble PEI/pDNA nanoparticles (Np) - used as model of carrier. The dispersion of GO-COOH sheets shifts the surface zeta potential of HAG/G to high negative value (SZP = -16.8 ± 2.21 mV) and further increases the encapsulation efficiency of PEI/pDNA Np onto hybrid HAG/G electrospun architectures to â¼ 69 % (HAG/G-Np). The in vitro biological investigations show a good metabolic activity of macrophages seeded onto HAG/G-Np (MTT assay), while gene expression experiments (fluorescent microscopy) show a 30 % increase in transient gene transfection of cells cultured in the presence of HAG/G-Np as compared to those incubated with free PEI/pDNA Np.
RESUMO
Advances in gene therapy, exemplified by mRNA vaccines against COVID-19, highlight the importance of lipid nanoparticles (LNPs) for nucleic acid delivery despite challenging storage conditions. Substituting mRNA with pDNA in LNPs may enhance stability and efficacy, yet maintaining LNP stability poses challenges, particularly during freeze-drying. Cryoprotectants offer potential to mitigate destabilization, improving LNP properties and in vivo performance. Here, we evaluated the effects of different concentrations of various cryoprotectants on the freeze-drying process of pDNA-loaded LNPs, assessing their physicochemical characteristics and transfection efficiency. Stability was examined under various storage conditions, confirming biological efficacy post-storage. Our results highlight the role of cryoprotectants in optimizing freeze-drying for the extended shelf life of nucleic acid-loaded LNPs. Trehalose emerged as an efficient cryoprotectant, maintaining LNP stability after the freeze-drying process for up to 2 years, with diameters and transfection efficiency comparable to fresh formulations. These findings demonstrate the optimized concentration of cryoprotectants to sustain LNP stability despite freeze-drying and prolonged storage, providing valuable insights for nucleic acid-based therapies.
Assuntos
Crioprotetores , DNA , Liofilização , Lipídeos , Nanopartículas , Plasmídeos , Transfecção , Trealose , Transfecção/métodos , Nanopartículas/química , Lipídeos/química , Trealose/química , Plasmídeos/administração & dosagem , Crioprotetores/química , DNA/administração & dosagem , DNA/química , Humanos , Estabilidade de Medicamentos , LipossomosRESUMO
This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.
Assuntos
DNA , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Humanos , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular Tumoral , Nanopartículas/química , DNA/química , DNA/metabolismo , Transfecção/métodos , Urease/metabolismo , Urease/química , Urease/genética , Plasmídeos/metabolismo , Plasmídeos/genética , Plasmídeos/química , Técnicas de Transferência de Genes , Ácido Poliglicólico/química , Ácido Láctico/química , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapiaRESUMO
The post COVID-19 pandemic era has emerged with more efficient vaccines, all based on genetic materials. However, to expand the use of nucleic components as vaccines, a new generation of nanosystems particularly constructed to increase RNA/DNA stability, half-life and facilitate administration are still required. This review highlights novel developments in mRNA and pDNA vaccines formulated into nanostructures exclusively composed by biopolymeric materials. Recent advances suggest that a new generation of vaccines may arise by adapting the structural features of biopolymers with the effectiveness of nucleic acids. The advantages offered by biopolymers, such as increased stability and targeting ability may cause a revolution in the immunization field for offering promptly adaptable and effective formulations for worldwide distribution.
[Box: see text].
Assuntos
COVID-19 , SARS-CoV-2 , Vacinas de DNA , Vacinas de DNA/imunologia , Vacinas de DNA/química , Vacinas de DNA/administração & dosagem , Humanos , Biopolímeros/química , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Nanoestruturas/química , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Vacinas de mRNA , AnimaisRESUMO
Cell-penetrating peptides (CPPs) are crucial for delivering macromolecules such as nucleic acids into cells. This study investigates the effectiveness of dual-modified penetratin peptides, focusing on the impact of stapling structures and an endosomal escape domain (EED) on enhancing intracellular uptake. Some CPPs were synthesized with an EED at either the N- or C-terminus and stapling structures, and then complexed with plasmid DNA (pDNA) to evaluate their cellular uptake. Results revealed that the combination of stapling and an EED significantly improved delivery efficiency, primarily via macropinocytosis and clathrin-mediated endocytosis. These findings underscore the importance of optimizing CPP sequences for effective nucleic acid delivery systems.
Assuntos
Peptídeos Penetradores de Células , Endossomos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/farmacologia , Humanos , Endossomos/metabolismo , DNA/química , Plasmídeos , Células HeLaRESUMO
Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.
RESUMO
The partial-denitrification-anammox (PdNA) process exhibits great potential in enabling the simultaneous removal of NO3--N and NH4+-N. This study delved into the impact of exogenous nano zero-valent iron (nZVI) on the PdNA process. Adding 10 mg L-1 of nZVI increased nitrogen removal efficiency up to 83.12 % and maintained higher relative abundances of certain beneficial bacteria. The maximum relative abundance of Candidatus Brocadia (1.6 %), Candidatus Kuenenia (1.5 %), Ignavibacterium (1.3 %), and Azospira (1.2 %) was observed at 10 mg L-1 of nZVI. However, the greatest relative abundance of Thauera (1.3 %) was recorded under 50 mg L-1. Moreover, applying nZVI selectively enhanced the abundance of NO3--N reductase genes. So, keeping the nZVI concentration at 10 mg L-1 or below is advisable to ensure a stable PdNA process in mainstream conditions. Considering nitrogen removal efficiency, using nZVI in the PD-anammox process could be more cost-effective in enhancing its adoption in industrial and mainstream settings.
Assuntos
Ferro , Nitrogênio , Ferro/química , Ferro/farmacologia , Bactérias , Metagenômica/métodos , Desnitrificação , Oxirredução , Nanopartículas Metálicas/química , Compostos de AmônioRESUMO
In this study, we evaluated the effect of several promoters on the transfection activity and immune-induction efficiency of a plasmid DNA (pDNA)/polyethylenimine/γ-polyglutamic acid complex (pDNA ternary complex). Model pDNAs encoding firefly luciferase (Luc) were constructed with several promoters, such as simian virus 40 (SV40), eukaryotic elongation factor 1 alpha (EF1), cytomegalovirus (CMV), and chicken beta actin hybrid (CBh) (pSV40-Luc, pEF1-Luc, pCMV-Luc, and pCBh-Luc, respectively). Four types of pDNA ternary complexes, each with approximately 145-nm particle size and -30-mV ζ-potential, were stably constructed. The pDNA ternary complex containing pSV40-Luc showed low gene expression, but the other complexes containing pEF1-Luc, pCMV-Luc, and pCBh-Luc showed high gene expression in DC2.4 cells and spleen after intravenous administration. After immunization using various pDNA encoding ovalbumin (OVA) such as pEF1-OVA, pCMV-OVA, and pCBh-OVA, only the pDNA ternary complex containing pCBh-OVA showed significant anti-OVA immunoglobulin G (IgG) induction. In conclusion, our results showed that the CBh promoter is potentially suitable for use in pDNA ternary complex-based DNA vaccination.
RESUMO
Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.
Assuntos
Anticorpos Antivirais , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Nanopartículas , Dióxido de Silício , Vacinas de DNA , Vacinas Virais , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Dióxido de Silício/química , Camundongos Endogâmicos BALB C , Feminino , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Desenvolvimento de VacinasRESUMO
Cell-penetrating peptides (CPPs) serve as potent vehicles for delivering membrane-impermeable compounds, including nucleic acids, into cells. In a previous study, we reported the successful intracellular delivery of small interfering RNAs (siRNAs) with negligible cytotoxicity using a peptide containing an unnatural amino acid (dipropylglycine). In the present study, we employed the same seven peptides as the previous study to evaluate their efficacy in delivering plasmid DNA (pDNA) intracellularly. Although pDNA and siRNA are nucleic acids, they differ in size and biological function, which may influence the optimal peptide sequences for their delivery. Herein, three peptides demonstrated effective pDNA transfection abilities. Notably, only one of the three peptides previously exhibited efficient gene-silencing effect with siRNA. These findings validate our hypothesis and offer insights for the personalized design of CPPs for the delivery of pDNA and siRNA.
Assuntos
Peptídeos Penetradores de Células , DNA , Plasmídeos , RNA Interferente Pequeno , Peptídeos Penetradores de Células/química , Humanos , DNA/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/administração & dosagem , Glicina/química , Transfecção , Células HeLa , Sobrevivência Celular/efeitos dos fármacosRESUMO
RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an efficient and versatile technique for the transfer of both RNA and DNA. Although the mechanism of electrotransfer of small nucleic acids has been studied previously, too little is known about the potential effects of significantly larger pDNA on this process. Here we present a fundamental study of the mechanism of electrotransfer of oligonucleotides and siRNA that occur independently and simultaneously with pDNA by employing confocal fluorescence microscopy. In contrast to the conditional understanding of the mechanism, we have shown that the electrotransfer of oligonucleotides and siRNA is driven by both electrophoretic forces and diffusion after EP, followed by subsequent entry into the nucleus within 5 min after treatment. The study also revealed that the efficiency of siRNA electrotransfer decreases in response to an increase in pDNA concentration. Overall, the study provides new insights into the mechanism of electrotransfer of small nucleic acids which may have broader implications for the future application of RNAi-based strategies.
Assuntos
Eletroporação , RNA Interferente Pequeno , Eletroporação/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Oligonucleotídeos/química , Plasmídeos/genética , DNA/genética , DNA/química , Interferência de RNA , Humanos , Microscopia ConfocalRESUMO
Lipid-polymer nanoparticles offer a promising strategy for improving gene nanomedicines by combining the benefits of biocompatibility and stability associated with the individual systems. However, research to date has focused on poly-lactic-co-glycolic acid (PLGA) and resulted in inefficient transfection. In this study, biocompatible Eudragit constructs E100 and RS100 were formulated as lipid-polymer nanoparticles loaded with pDNA expressing red fluorescent protein (RFP) as a model therapeutic. Using a facile nanoprecipitation technique, a core-shell structure stabilised by lipid-polyethylene glycol (PEG) surfactant was produced and displayed resistance to ultracentrifugation. Both cationic polymers E100 (pH-sensitive dissolution at 5) and RS100 (pH-insensitive dissolution) produced 150-200 nm sized particles with a small positive surface charge (+3-5 mV) and high pDNA encapsulation efficiencies (EE) of 75-90%. The dissolution properties of the Eudragit polymers significantly impacted the biological performance in human embryonic kidney cells (HEK293T). Nanoparticles composed of polymer RS100 resulted in consistently high cell viability (80-100%), whereas polymer E100 demonstrated dose-dependent behaviour (20-90% cell viability). The low dissolution of polymer RS100 over the full pH range and the resulting nanoparticles failed to induce RFP expression in HEK293T cells. In contrast, polymer E100-constructed nanoparticles resulted in reproducible and gradually increasing RFP expression of 26-42% at 48-72 h. Intraperitoneal (IP) injection of the polymer E100-based nanoparticles in C57BL/6 mice resulted in targeted RFP expression in mouse testes with favourable biocompatibility one-week post-administration. These findings predicate Eudragit based lipid-polymer nanoparticles as a novel and effective carrier for nucleic acids, which could facilitate pre-clinical evaluation and translation of gene nanomedicines.
Assuntos
DNA , Nanopartículas , Plasmídeos , Transfecção , Humanos , Animais , Nanopartículas/química , Concentração de Íons de Hidrogênio , Plasmídeos/administração & dosagem , Transfecção/métodos , Células HEK293 , Camundongos , DNA/administração & dosagem , DNA/química , Lipídeos/química , Polímeros/química , Solubilidade , Tamanho da Partícula , Polietilenoglicóis/química , Proteína Vermelha Fluorescente , Ácidos Polimetacrílicos/química , Masculino , AcrilatosRESUMO
The increasing demand for highly pure biopharmaceuticals has put significant pressure on the biotechnological industry to innovate in production and purification processes. Nucleic acid purification, crucial for gene therapy and vaccine production, presents challenges due to the unique physical and chemical properties of these molecules. Meeting regulatory standards necessitates large quantities of biotherapeutic agents of high purity. While conventional chromatography offers versatility and efficiency, it suffers from drawbacks like low flow rates and binding capacity, as well as high mass transfer resistance. Recent advancements in continuous beds, including monoliths and cryogel-based systems, have emerged as promising solutions to overcome these limitations. This review explores and evaluates the latest progress in chromatography utilizing monolithic and cryogenic supports for nucleic acid purification.
RESUMO
Cell-penetrating peptides (CPPs), for example, arginine (Arg) rich peptides, are used for the intracellular delivery of nucleic acids. In this study, oligosarcosine-conjugated Arg-rich peptides were designed as plasmid DNA (pDNA) carriers, and the physicochemical parameters and transfection efficiency of the peptide/pDNA complexes were evaluated. Oligosarcosine with different lengths were conjugated to a base sequence composed of arginine and α-aminoisobutyric acid (Aib) [(Aib-Arg-Arg)3]. Oligosarcosine conjugation inhibited the aggregation of the complexes after mixing with pDNA, shielded the positive charge of the complexes, and provided efficient pDNA transfection in cultured cells. The efficiency of the pDNA transfection was improved by varying the length of the oligosarcosine moiety (10-15 units were optimal). The cellular uptake efficiency and intracellular distribution of pDNA were the same regardless of oligosarcosine conjugation. These results implied that intracellular processes, including the decondensation of pDNA, contributed to the efficiency of the protein expression from pDNA. This study demonstrated the advantages of oligosarcosine conjugation to Arg-rich CPPs and provided valuable insight into the future design of CPPs.
Assuntos
Arginina , Peptídeos Penetradores de Células , Arginina/genética , DNA/química , DNA/genética , Plasmídeos/genética , Transfecção , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genéticaRESUMO
A number of functional nucleic acids, including plasmid DNA (pDNA) and small interfering RNA (siRNA), have been attracting increasing attention as new therapeutic modalities worldwide. Dry pDNA and siRNA powder formulations for inhalation are considered practical in clinical applications for respiratory diseases. However, physical stresses in the powder-forming process may destabilize nucleic acids, particularly when vectors with stabilizing effects are not used. We herein compare the stability of naked pDNA and siRNA through various physical treatments and two powder-forming processes. The structural and functional integrities of pDNA were markedly reduced via sonication, heating, and atomization, whereas those of siRNA were preserved throughout all of the physical treatments investigated. Spray-dried and spray-freeze-dried powders of siRNA maintained their structural and functional integrities, whereas those of pDNA did not. These results demonstrate that siRNA is more suitable for powder formation in the naked state than pDNA due to its higher stability under physical treatments. Furthermore, a spray-freeze-dried powder with a high content of naked siRNA (12% of the powder) was successfully produced that preserved its structural and functional integrities, achieving high aerosol performance with a fine particle fraction of approximately 40%.
RESUMO
Introduction: Chimeric antigen receptor (CAR) cell therapy represents a hallmark in cancer immunotherapy, with significant clinical results in the treatment of hematological tumors. However, current approved methods to engineer T cells to express CAR use viral vectors, which are integrative and have been associated with severe adverse effects due to constitutive expression of CAR. In this context, non-viral vectors such as ionizable lipid nanoparticles (LNPs) arise as an alternative to engineer CAR T cells with transient expression of CAR. Methods: Here, we formulated a mini-library of LNPs to deliver pDNA to T cells by varying the molar ratios of excipient lipids in each formulation. LNPs were characterized and screened in vitro using a T cell line (Jurkat). The optimized formulation was used ex vivo to engineer T cells derived from human peripheral blood mononuclear cells (PBMCs) for the expression of an anti-CD19 CAR (CAR-CD19BBz). The effectiveness of these CAR T cells was assessed in vitro against Raji (CD19+) cells. Results: LNPs formulated with different molar ratios of excipient lipids efficiently delivered pDNA to Jurkat cells with low cytotoxicity compared to conventional transfection methods, such as electroporation and lipofectamine. We show that CAR-CD19BBz expression in T cells was transient after transfection with LNPs. Jurkat cells transfected with our top-performing LNPs underwent activation when exposed to CD19+ target cells. Using our top-performing LNP-9-CAR, we were able to engineer human primary T cells to express CAR-CD19BBz, which elicited significant specific killing of CD19+ target cells in vitro. Conclusion: Collectively, our results show that LNP-mediated delivery of pDNA is a suitable method to engineer human T cells to express CAR, which holds promise for improving the production methods and broader application of this therapy in the future.
Assuntos
Excipientes , Nanopartículas , Humanos , Leucócitos Mononucleares , Plasmídeos/genética , DNA/genética , LipídeosRESUMO
Gene therapy has emerged as a significant advancement in medicine in recent years. However, the development of effective gene delivery vectors, particularly polymer vectors, remains a significant challenge. Limited understanding of the internal structure of polymer vectors has hindered efforts to enhance their efficiency. This work focuses on investigating the impact of polymer structure on gene delivery, using the well-known polymeric vector poly(ß-amino ester) (PAE) as a case study. For the first time, we revealed the distinct characteristics of individual polymer components and their synergistic effects-the appropriate combination of different components within a polymer (high MW and low MW components) on gene delivery. Additionally, artificial intelligence (AI) analysis was employed to decipher the relationship between the polymer component distribution (PCD) and gene transfection performance. Guided by this analysis, a series of highly efficient polymer vectors that outperform current commercial reagents such as jetPEI and Lipo3000 were developed, among which the transfection efficiency of the PAE-B1-based polyplex was approximately 1.5 times that of Lipo3000 and 2 times that of jetPEI in U251 cells.
Assuntos
Inteligência Artificial , Polímeros , Polímeros/química , Técnicas de Transferência de Genes , Transfecção , Terapia GenéticaRESUMO
The effectiveness of the commonly used therapy is low for treating triple-negative breast cancer (TNBC). Macrophages, accounting for up to 50% of the TNBC tumor mass, are involved in innate and adaptive immunity, which can serve as an effective weapon against TNBC via combined immunotherapy. Here, we engineered mannose and glycocholic acid-modified trimethyl chitosan (MTG) nanoparticles (NPs) encapsulating signal regulatory protein α (SIRPα) siRNA (siSIRPα, a macrophage checkpoint inhibitor) and mucin 1 (MUC1) pDNA (pMUC1, a therapeutic pDNA vaccine) (MTG/siSIRPα/pMUC1 NPs) for in situ educating macrophages via an oral route to exert the cooperative antitumor effects of siSIRPα and pMUC1. Orally delivered MTG-based NPs accumulated in the macrophages in lymph nodes and tumor tissues via the intestinal lymphatic transport pathway, leading to strong cellular immunity responses. Following the transfection of orally administered MTG/siSIRPα/pMUC1 NPs within the same macrophages, siSIRPα strengthened the pMUC1 vaccine-induced systemic cellular immunity, while pMUC1 enhanced siSIRPα-mediated macrophage phagocytosis, M1-phenotype polarization, and tumor microenvironment (TME) remodeling at the tumor sites, thereby inhibiting the growth and metastasis of TNBC. The simultaneous achievements of the mutual promotion of innate and adaptive immunity in the local TME and in the whole body suggested that MTG/siSIRPα/pMUC1 NPs would provide a promising paradigm for the combined immunotherapy of TNBC via oral delivery of genes.
Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Macrófagos/metabolismo , Nanopartículas/uso terapêutico , Intestinos/patologia , Imunoterapia , Microambiente Tumoral , Linhagem Celular TumoralRESUMO
Increased need for plasmid DNA (pDNA) with sizes above 10 kbp (large pDNA) in gene therapy and vaccination brings the need for its large-scale production with high purity. Chromatographic purification of large pDNA is often challenging due to low process yields and column clogging, especially using anion-exchanging columns. The goal of our investigation was to evaluate the mass balance and pDNA isoform composition at column outlet for plasmids of different sizes in combination with weak anion exchange (AEX) monolith columns of varying channel size (2, 3 and 6 µm channel size). We have proven that open circular pDNA (OC pDNA) isoform is an important driver of reduced chromatographic performance in AEX chromatography. The main reason for the behaviour is the entrapment of OC pDNA in chromatographic supports with smaller channel sizes. Entrapment of individual isoforms was characterised for porous beads and convective monolithic columns. Convective entrapment of OC pDNA isoform was confirmed on both types of stationary phases. Porous beads in addition showed a reduced recovery of supercoiled pDNA (on an 11.6 kbp plasmid) caused by diffusional entrapment within the porous structure. Use of convective AEX monoliths or membranes with channel diameter >3.5 µm has been shown to increase yields and prevent irreversible pressure build-up and column clogging during purification of plasmids at least up to 16 kbp in size.
Assuntos
Cromatografia , DNA , Plasmídeos/genética , DNA/genética , DNA Super-Helicoidal , Isoformas de ProteínasRESUMO
Immune check inhibitors (ICIs) have moderate response rates (~20%-30%) in some malignancies clinically, and, when used in combination with other immunotherapeutic strategies such as DNA tumor vaccines, there is evidence to suggest that they could optimize the efficacy of cancer treatment. In this study, we validated that intramuscular injection of plasmid DNA (pDNA) encoding OVA combined with pDNA encoding α-PD-1 (abbreviated as α-PD-1 in the following treatment groups) may enhance therapeutic efficacy by means of in situ gene delivery and enhanced muscle-specific potent promoter. Mice treated with pDNA-OVA or pDNA-α-PD-1 alone showed weak tumor inhibition in the MC38-OVA-bearing model. In comparison, the combined treatment of pDNA-OVA and pDNA-α-PD-1 resulted in superior tumor growth inhibition and a significantly improved survival rate of over 60% on day 45. In the B16-F10-OVA metastasis model, the addition of the DNA vaccine enhanced resistance to tumor metastasis and increased the populations of CD8+ T cells in blood and spleen. In conclusion, the current research shows that a combination of pDNA-encoded PD-1 antibody and DNA vaccine expressed in vivo is an efficient, safe, and economical strategy for tumor therapy.