Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Chemosphere ; 362: 142864, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39019184

RESUMO

Effective removal of phosphate from water is essential for preventing the eutrophication and worsening of water quality. This study aims to enhance phosphate removal by synthesizing starch-stabilized ferromanganese binary oxide (FMBO-S), discover the factors, and investigate adsorption mechanisms. FMBO and FMBO-S properties were studied using Scanning Electron Microscopy, BET analysis, Polydispersity Index (PDI), Fourier Transform Infrared Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS). After starch loading, the average pore diameter increased from 14.89 Å to 25.16 Å, and significantly increased the pore volume in the mesopore region. FMBO-S showed a PDI value below 0.5 indicating homogeneous size dispersity and demonstrated faster and higher adsorption capacity: 61.24 mg g-1 > 28.57 mg g-1. Both FMBO and FMBO-S adsorption data fit well with the pseudo-second-order and Freundlich models, indicating a chemisorption and multilayered adsorption process. The phosphate adsorption by FMBO was pH-dependent, suggesting electrostatic attraction as the dominant mechanism. For the FMBO-S, phosphate adsorption was favored in a wide pH range, despite the weaker electrostatic attraction as evident from the point of zero charge and zeta potential values, indicating ligand exchange as a main mechanism. Moreover, the XPS analysis shows a significant change in the proportion of Fe species for FMBO-S than FMBO after phosphate adsorption, indicating significant involvement of Fe. Meanwhile, phosphate adsorption was almost unaffected by the presence of Cl-, NO3-, and SO42- anions, whereas CO32- significantly reduced the adsorption capacity. This study revealed that FMBO-S could be a promising, low-cost adsorbent for phosphate removal and recovery from water.


Assuntos
Óxidos , Fosfatos , Amido , Poluentes Químicos da Água , Purificação da Água , Adsorção , Amido/química , Fosfatos/química , Poluentes Químicos da Água/química , Óxidos/química , Purificação da Água/métodos , Espectroscopia Fotoeletrônica , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Biol Macromol ; 277(Pt 1): 134108, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39048010

RESUMO

The escalating threat of malachite green (MG) pollution poses significant risks to ecosystems. Saturation mutation targeting Tyr230 of small laccase (SLAC) from Streptomyces coelicolor yielded Y230R, exhibiting a remarkable 104 % increase in specific activity. Notably, this mutation achieved dual enhancements in both activity and pH stability. Molecular dynamics simulation revealed higher structural stability of Y230R compared to wild-type (WT) across varying pH levels. The increased count of hydrogen bonds in Y230R compared to WT may be contribute to its stability. Y230R demonstrated superior catalytic efficiency (67.0 %) in MG decolorization, maintaining over 90 % activity after 30 min incubation in MG solution (500 mg/L), highlighting enhanced tolerance compared to WT. Molecular docking analysis attributed the differential catalytic effects on MG and ABTS to structural disparities and hydrogen bonding. Y230R stands as a promising composite mutant for future laccase engineering and industrial applications.


Assuntos
Estabilidade Enzimática , Lacase , Simulação de Acoplamento Molecular , Corantes de Rosanilina , Lacase/química , Lacase/genética , Lacase/metabolismo , Corantes de Rosanilina/química , Corantes de Rosanilina/metabolismo , Concentração de Íons de Hidrogênio , Streptomyces/enzimologia , Streptomyces/genética , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Mutação , Cinética , Biocatálise , Catálise
3.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931444

RESUMO

Alectinib HCl (ALBHCl) is a tyrosine kinase inhibitor used for non-small cell lung carcinoma (NSCLC). The aim of this study is to unlock some of the physicochemical properties of ALBHCL that serve as a database for any future studies. A solubility study of ALBHCL was performed in different solvents. Also, photostability was tested in the solution and solid states, and the order of reaction and rate constant were calculated. In addition to the pH solubility relation, the pH-rate relation at different temperatures was also studied, and the profiles were constructed. A solubility study was also performed in different media for the purpose of optimizing suitable sink conditions for the in vitro dissolution testing of solid dosage forms. Solubility tests in multiple solvents and pH conditions revealed that the highest solubility was in DMSO, methanol, and chloroform, with acidic media yielding the maximum solubility but degrading at rather low pH levels. ALBHCL proved unstable at high temperatures and under light exposure, with varying stability across different pH levels. The optimal dissolution media for in vitro oral dosage form evaluation were determined, achieving sink conditions at pH levels of 6.8 and 4.5 with specific additives. This study enhances the existing database on ALBHCL's physicochemical properties, emphasizing the importance of pH optimization in pharmaceutical processes and providing valuable insights into its pharmaceutical application.

4.
Int J Biol Macromol ; 272(Pt 2): 132913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38851606

RESUMO

Nasal vaccine is a non-invasive vaccine that activates systemic and mucosal immunity in the presence of an adjuvant, thereby enhancing immune function. In this work, chitosan/oligochitosan/tween 80 (CS-COS-T80) co-stabilized emulsion was designed and further used as the nasal adjuvant. CS-COS-T80 emulsion exhibited outstanding stability under pH 6-8 with uniformly dispersed droplets and nano-scale particle size (<0.25 µm), and maintained stable at 4 °C for 150-day storage. Addition of model antigen ovalbumin (OVA) had no effect on the stability of CS-COS-T80 emulsion. In vivo nasal immunity indicated that CS-COS-T80 emulsion prolonged the retention time of OVA in the nasal cavity (from 4 to 8 h to >12 h), as compared to T80-emulsion. CS-COS-T80 emulsion produced a stronger mucosal immune response to OVA, with secretory IgA levels 5-fold and 2-fold higher than those of bare OVA and commercial adjuvant MF59, respectively. Compared to MF59, CS-COS-T80 induced a stronger humoral immune response and a mixed Th1/Th2 immune response of OVA after immunization. Furthermore, in the presence of CS-COS-T80 emulsion, the secretion of IL-4 and IFN-γ and the activation of splenocyte memory T-cell differentiation increased from 173.98 to 210.21 pg/mL and from 75.46 to 104.01 pg/mL, respectively. Therefore, CS-COS-T80 emulsion may serve as a promising adjuvant platform.


Assuntos
Adjuvantes Imunológicos , Quitosana , Emulsões , Imunidade nas Mucosas , Mucosa Nasal , Ovalbumina , Quitosana/química , Animais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Imunidade nas Mucosas/efeitos dos fármacos , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Mucosa Nasal/imunologia , Feminino , Administração Intranasal , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Tamanho da Partícula , Oligossacarídeos
5.
Food Res Int ; 190: 114595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945610

RESUMO

R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.


Assuntos
Ficoeritrina , Rodófitas , Ficoeritrina/química , Ficoeritrina/isolamento & purificação , Concentração de Íons de Hidrogênio , Rodófitas/química , Ultrafiltração/métodos , Estabilidade Proteica , Precipitação Química , Sulfato de Amônio/química , Temperatura Alta , Temperatura
6.
Int J Biol Macromol ; 268(Pt 1): 131451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614177

RESUMO

In this study, citric acid successfully reacted with agar through the dry heat method, and citrate agar (CA) gel was used to stabilize O/W emulsions. The mechanisms of the CA structure and emulsion pH that affected emulsion stabilization were analyzed, and the application of CA gel emulsion (CAGE) was explored. Compared with native agar (NA), CA showed lower gel strength, higher transparency, and higher water contact angle. These changes indicate that a cross-linking reaction occurred, and it was demonstrated via FTIR and NMR. The emulsion properties were evaluated using particle size, ζ-potential, and the emulsification activity index. Results showed that CAGEs had a smaller particle size and lower ζ-potential than the native agar gel emulsion (NAGE). Meanwhile, confocal laser scanning microscopy confirmed that the CA gels stabilized the emulsions by forming a protective film around the oil droplets. Stability experiments revealed that CAGE (prepared with CA gel [DS = 0.145]) exhibited better stability than NAGE in the pH range of 3-11, and the rheological results further confirmed that the stability of the emulsions was influenced by the network structure and oil droplet interaction forces. Afterward, the application prospect of CAGE was evaluated by encapsulating vitamin D3 and curcumin.


Assuntos
Ágar , Ácido Cítrico , Emulsões , Tamanho da Partícula , Emulsões/química , Ágar/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Géis/química , Reologia , Água/química , Colecalciferol/química
7.
Bioresour Technol ; 398: 130472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387841

RESUMO

As toxic contaminants, aromatic compounds are widespread in most environmental matrices, and bioenzymatic catalysis plays a critical role in the degradation of xenobiotics. Here, a thermophillic aromatic hydrocarbon degrader Aeribacillus pallidus HB-1 was found. Bioinformatic analysis of the HB-1 genome revealed two ring-cleaving extradiol dioxygenases (EDOs), among which, EDO-0418 was assigned to a new subfamily of type I.1 EDOs and exhibited a broad substrate specificity, particularly towards biarylic substrate. Both EDOs exhibited optimal activities at elevated temperatures (55 and 65 °C, respectively) and showed remarkable thermostability, pH stability, metal ion resistance and tolerance to chemical reagents. Most importantly, simulated wastewater bioreactor experiments demonstrated efficient and uniform degradation performance of mixed aromatic substrates under harsh environments by the two enzymes combined for potential industrial applications. The unveiling of two thermostable dioxygenases with broad substrate specificities and stress tolerance provides a novel approach for highly efficient environmental bioremediation using composite enzyme systems.


Assuntos
Bacillaceae , Dioxigenases , Hidrocarbonetos Aromáticos , Dioxigenases/genética , Dioxigenases/química , Dioxigenases/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Metais
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123701, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070313

RESUMO

In order to expand the arsenal of tools and areas for practical use of BODIPY dyes as bifunctional fluorescent theranostics, we studied the effect of the meso-substituents nature and medium properties on photo- and pH-stability, efficiency of singlet oxygen generation, and affinity to biostructures of terpene-BODIPY conjugates. The BODIPYs fused with myrtenol or thiotherpenoid via carboxylic acid residues exhibit high stability over a wide pH range and the presence of a bulky substituent at the meso-position of BODIPY conjugates increases their photostability two-fold compared to structurally related meso-unsubstituted analogues. Furthermore, the photodegradation rate of the conjugates directly depends on their ability to generate singlet oxygen and the course probability of the corresponding red-ox reactions involving reactive oxygen species. The conjugate of BODIPY with a thiotherpenoid demonstrated high ability to penetrate the membranes of filamentous and yeast-like fungi and bind to membrane of organelles in the fungal cell. At the same time, this compound also had a high ability to penetrate into biofilms of Staphylococcus aureus and Klebsiella pneumoniae and into bacterial cells within the matrix, which makes this compound promising for staining intracellular structures of eukaryotic cells and bacteria embedded into biofilms.


Assuntos
Corantes Fluorescentes , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Corantes Fluorescentes/química , Compostos de Boro/química , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Fungos
9.
Biochem Biophys Rep ; 37: 101610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155944

RESUMO

The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 â†’ 3) sialyl linkages than those containing α(2 â†’ 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.

10.
Food Chem X ; 20: 101020, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144797

RESUMO

Sodium copper chlorophyllin (SCC), with a higher stability and water solubility than chlorophyll, has limited applications in acidic products due to precipitation. We investigated the effect of pectin (PE), carboxymethyl cellulose (CMC), xanthan gum (XG), carrageenan gum (CG), gellan gum (GG), tragacanth gum (TG), gum Arabic (GA), and polysorbate 80 (PS80) on SCC stability in acidic model solutions (pH = 3.5). These stabilizers led to a significant reduction in particle size and zeta-potential compared to control sample. GA (33.3:1), PE (8:1), CMC (4:1), XG (1.33:1), and PS80 (0.67:1) stabilized SCC in acidic systems for 28 days. The FTIR analysis showed that mainly electrostatic and hydrogen bonds between SCC and stabilizers led to a substantial decline in particle size, improving SCC distribution and stability within acidic environment. Thus, XG and CMC could be effectively used for SCC stabilization under acidic solutions where applying PS80 surfactant is a health concern.

11.
Prep Biochem Biotechnol ; : 1-13, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937535

RESUMO

The study illustrated here aims on an organic solvent tolerant lipase from Staphylococcus capitis (SCL). The gene part, encoding the mature lipase, was cloned and sequenced. The concluded polypeptide sequence, equivalent to the protein, consist of 388 amino acid residues with a molecular mass of about 45 kDa. A structure-based alignment of the SCL amino acid sequence shows high identities with those many staphylococcal lipases. From this alignment of sequences, the catalytic triad (Ser 117, Asp 308 and His 347) of SCL could be identified. The mature part of the SCL was expressed in Escherichia coli and the recombinant lipase (r-SCL) was purified to homogeneity. The purified r-SCL presented a quite interesting stability at low temperatures (< 30 °C) and the enzyme was found to be highly stable in polar organic solvent and at a pH ranging from 3 to 12. After that, we have demonstrated that the recombinant enzyme may be implicated in the biodegradability of oily wastewater from effluents of fast-food restaurants; the maximum conversion yield into fatty acids obtained at 30 °C, was 65%.

12.
J Fungi (Basel) ; 9(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37504725

RESUMO

Marine microbial enzymes including amylases are important in different industrial production due to their properties and applications. This study was focused on the screening of marine-derived fungi for amylase activities. First, we isolated a number of fungi from the sediments of the South China Sea. By the method of dish screening (in vitro), we subsequently obtained a series of amylase-producing fungal strains. The cell-lysate activities of amylases produced by marine fungi toward starch hydrolysis were achieved with the dinitrosalyicylic acid (DNS) method. In addition, the effect of pH and temperature on amylase activities, including thermal and pH stability were discussed. Results showed that out of the 57 isolates with amylase-producing activities, fungi Aspergillus flavus 9261 was found to produce amylase with the best activity of 10.7482 U/mg (wet mycelia). The amylase of Aspergillus flavus 9261 exhibited remarkable thermostability and pH stability with no activity loss after incubation at 50 °C and pH 5.0 for 1 h, respectively. The results provide advances in discovering enzymes from marine-derived fungi and their biotechnology relevance.

13.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446078

RESUMO

Laccases are widely used in industrial production due to their broad substrate availability and environmentally friendly nature. However, the pursuit of laccases with superior stability and increased heterogeneous expression to meet industry demands appears to be an ongoing challenge. To address this challenge, we resurrected five ancestral sequences of laccase BsCotA and their homologues. All five variants were successfully expressed in soluble and functional forms with improved expression levels in Escherichia coli. Among the five variants, three exhibited higher catalytic rates, thermal stabilities, and acidic stabilities. Notably, AncCotA2, the best-performing variant, displayed a kcat/KM of 7.5 × 105 M-1·s-1, 5.2-fold higher than that of the wild-type BsCotA, an improved thermo- and acidic stability, and better dye decolorization ability. This study provides a laccase variant with high application potential and presents a new starting point for future enzyme engineering.


Assuntos
Proteínas de Bactérias , Lacase , Lacase/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Corantes/química
14.
Anal Bioanal Chem ; 415(22): 5365-5377, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439856

RESUMO

The Covid-19 pandemic has affected the global population since 2019. The rapid development and approval of vaccines has brought relief. Yet, effective cures are still being researched. Even if the pandemic situation may end, SARS-CoV-2 will remain and, thus, continued application of the drugs will lead to emissions of the active ingredients into the aquatic environment, as with other anthropogenic micropollutants. However, a general method for trace analysis of antiviral drugs is still missing. To this purpose, favipiravir, remdesivir, its active metabolite GS-441524, molnupiravir and its active metabolite EIDD-1931 were selected as representative analytes. A method was developed based on solid phase extraction and high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry. Optimization comprised the choice of chromatographic columns, elution gradient, mass spectrometry and tandem mass spectrometry parameters. Solid phase extraction proved suitable for increase in limits of detection and quantitation. amelioration of the limits of detection and quantitation. Matrix effects were investigated applying the optimized method to a wastewater sample with added virustatics. All five compounds could be separated with reversed phase chromatography, whereas EIDD-1931 profited from hydrophilic interaction liquid chromatography. The optimized method yielded limits of detection and quantification of 2.1·10-1, 6.9·10-1 µg·L-1 for favipiravir, 1.8·10-3, 5.5·10-3 µg·L-1 for remdesivir, 1.9·10-3, 7.6·10-3 µg·L-1 for GS-441524, 2.9·10-3, 8.7·10-3 µg·L-1 for molnupiravir, and 1.3·10-1, 3.8·10-1 µg·L-1 for EIDD 1931. The method was first applied to compound stability testing at pH 2.8 and 9.7. At pH 2.8, remdesivir, GS-441524 and molnupiravir proved stable, whereas about 14% of EIDD-1931 and favipiravir were degraded. All five antiviral compounds were almost completely decomposed at pH 9.7. The application of the method was further demonstrated for potential transformation product detection on favipiravir ozonation monitoring.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Pandemias , Espectrometria de Massas em Tandem/métodos , Preparações Farmacêuticas , Extração em Fase Sólida/métodos
15.
Front Mol Biosci ; 10: 1211621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363404

RESUMO

Introduction: Tannase is a crucial enzyme that finds wide applications in the pharmaceutical industry, feed processing, and beverage manufacturing. Although extensive studies have been conducted on tannases from fungi and bacteria, reports on tannases exhibiting favorable pH stability are relatively limited. Methods: In this study, a tannin-degrading strain Debaryomyces hansenii was screened to induce tannase production, and the corresponding tannase coding gene TANF was successfully cloned and expressed in Yarrowia lipolytica. SDS-PAGE analysis revealed that the purified TanF tannase had a molecular weight of approximately 70 kDa. Results and Discussion: The enzyme demonstrated optimal activity at 40°C and retained over 80% of its activity in the range of 35°C-60°C. Of particular interest, TanF exhibited remarkable enzyme activity at pH 5.0 and retained more than 70% of its relative activity across a wide pH range of 3.0-8.0. Furthermore, TanF exhibited broad substrate specificity for gallate esters. The final gallic acid production by TanF from tannic acid achieved 18.32 g/L. Therefore, the excellent properties TanF has been demonstrated to be an efficient tool for the preparation of gallic acid.

16.
Environ Sci Pollut Res Int ; 30(29): 73534-73547, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37191749

RESUMO

Recently, selective phosphorus removal from aqueous solution has been a highly desirable strategy to combat eutrophication due to the increasingly stringent phosphorous emission standards. However, conventional adsorbents pose the limitations in phosphate removal suffering from lack of selectivity and stability under complicated condition and poor separation. In this study, novel Y2O3 based calcium-alginate (Y2O3/SA) beads of feasible stability and highly selectivity towards phosphate by encapsulating Y2O3 nanoparticles inside calcium-alginate beads via Ca2+ controlled gelation process was synthesized and characterized. The phosphate adsorption performance and mechanism were investigated. In general, a high selectivity among co-existing anions was found with co-existing anion concentration up to 62.5 times of the phosphate concentration. Additionally, phosphate adsorption by Y2O3/SA beads exhibited stable performance over a wide pH range between 2 and 10, while reaching the maximum adsorption capacity at pH 3 (48.54 mg-P/g). The value of point of zero charge (pHpzc) of Y2O3/SA beads was approximately 3.45. Pseudo-second-order and Freundlich isotherm models can well accord with kinetics and isotherms data. The FTIR and XPS characterizations analyzed that inner-sphere complexes were proposed to be the major contributor of Y2O3/SA beads for phosphate removal. In conclusion, Y2O3/SA beads as the mesoporous material exhibited excellent stability and selectivity towards phosphate removal.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Cálcio , Alginatos/química , Adsorção , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Água/química , Ânions , Fósforo , Cinética
17.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049802

RESUMO

Laccases have been widely used for fruit juice clarification, food modification, and paper pulp delignification. In addition, laccases exhibit remarkable performance in the degradation of toxic substances, including pesticides, organic synthetic dyes, antibiotics, and organic pollutants. Thus, the screening and development of robust laccases has attracted significant attention. In this study, Vibrio sp. LA is a strain capable of producing cold-adapted laccases. The laccase coding gene L01 was cloned from this strain and expressed in Yarrowia lipolytica, a host with good secretion ability. The secreted L01 (approximate MW of 56,000 Da) had the activity and specific activity of 18.6 U/mL and 98.6 U/mg toward ABTS, respectively. The highest activity occurred at 35 °C. At 20 °C, L01 activity was over 70% of the maximum activity in pH conditions ranging from 4.5-10.0. Several synthetic dyes were efficiently degraded by L01. Owing to its robustness, salt tolerance, and pH stability, L01 is a promising catalytic tool for potential industrial applications.


Assuntos
Lacase , Vibrio , Lacase/metabolismo , Tolerância ao Sal , Corantes/química , Vibrio/genética , Concentração de Íons de Hidrogênio
18.
Sci Total Environ ; 866: 161066, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36565882

RESUMO

Discharging the tannery wastewater into the environment is a serious challenge worldwide due to the release of severe recalcitrant pollutants such as oil compounds and organic materials. The biological treatment through enzymatic hydrolysis is a cheap and eco-friendly method for eliminating fatty substances from wastewater. In this context, lipases can be utilized for bio-treatment of wastewater in multifaceted industrial applications. To overcome the limitations in removing pollutants in the effluent, we aimed to identify a novel robust stable lipase (PersiLipase1) from metagenomic data of tannery wastewater for effective bio-degradation of the oily wastewater pollution. The lipase displayed remarkable thermostability and maintained over 81 % of its activity at 60 °C.After prolonged incubation for 35 days at 60°C, the PersiLipase1 still maintained 53.9 % of its activity. The enzyme also retained over 67 % of its activity in a wide range of pH (4.0 to 9.0). In addition, PersiLipase1 demonstrated considerable tolerance toward metal ions and organic solvents (e.g., retaining >70% activity after the addition of 100 mM of chemicals). Hydrolysis of olive oil and sheep fat by this enzyme showed 100 % efficiency. Furthermore, the PersiLipase1 proved to be efficient for biotreatment of oil and grease from tannery wastewater with the hydrolysis efficiency of 90.76 % ± 0.88. These results demonstrated that the metagenome-derived PersiLipase1 from tannery wastewater has a promising potential for the biodegradation and management of oily wastewater pollution.


Assuntos
Lipase , Águas Residuárias , Animais , Ovinos , Lipase/química , Hidrólise , Detergentes , Solventes/química , Concentração de Íons de Hidrogênio , Temperatura
19.
Enzyme Microb Technol ; 162: 110121, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36137417

RESUMO

The industrial production of monascus yellow pigments (MYPs) has not yet been done due to the lack of high-quality industrial Monascus strains. In this work, we employed carbon ion beam (12C6+) irradiation to screen Monascus strains that produce high-quality extracellular MYPs (extr-MYPs). One genetically stable M. purpureus mutant of BWY-5 with extr-MYPs accumulation was obtained under 12C6+ irradiation (80 MeV/u, 200 Gy). M. purpureus BWY-5 could use various nitrogen sources to produce single pH stable extr-MYPs (around 80 AU at 370 nm). Moreover, citrinin was not detected by HPLC method. Transcriptomics of the MYP production strain suggested that Carbon ion beam irradiation led to deletion (MpigF, MpigG and MpigH), downregulation (CtnE, CtnH and CtnI) and upregulation (MpigM) of genes related with biosynthesis of MOPs and MRPs, citrinin, and extr-MYPs, respectively. The results showed that M. purpureus BWY-5 has the potential to be used as an industrial Monascus strain and platform for extr-MYPs production and monascus polyketide synthetic pathway studies, respectively.


Assuntos
Citrinina , Monascus , Monascus/genética , Monascus/metabolismo , Nitrogênio/metabolismo , Citrinina/metabolismo , Carbono/metabolismo , Pigmentos Biológicos/metabolismo
20.
Int J Biol Macromol ; 222(Pt B): 1758-1767, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195233

RESUMO

Phycocyanin (PC), a spirulina-derived protein-chromophore complex, suffers from poor techno-functional properties and is highly susceptible to aggregation and color changes upon heating and pH fluctuations. We tackled these issues by modifying PC via PEGylation. Electrophoresis and Fourier transform infrared spectroscopy proved successful conjugation of methoxy PEG (mPEG) chains on PC after PEGylation. Circular dichroism indicated highly ordered folding states adopted by PEGylated PC, which we attributed to the mPEG chains on the protein surface that sterically stabilized the protein structure. Consequently, the mPEG-PC conjugates exhibited high blue color intensity and improved thermodynamic stability. Further, benefit from an electrostatic shielding effect of mPEG chains, surface charges of PEGylated PC were neutralized over pH 2-9 and the blue hue of PC was stabilized against pH variations. Additionally, the flexible and hydrophilic mPEG polymers on the PC surface promoted protein-protein and protein-water interactions. PEGylated PC thus gained increased protein solubility, techno-functionality (emulsifying, foaming, and gelling performance), and antioxidant activities, when compared to unmodified PC. Heat-induced gels formed by mPEG-PC conjugates exhibited increased stiffness, higher water retention, and weak gel-type rheological properties. After PEGylation, the improved functional properties, bioactivity, and color stability against heat and pH fluctuations will facilitate food and pharmaceutical applications of PC.


Assuntos
Temperatura Alta , Ficocianina , Polietilenoglicóis/química , Proteínas , Coloides , Água , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA