Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Cell Rep Med ; 5(10): 101770, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39368485

RESUMO

Wilms tumor (WT) is the most common pediatric kidney cancer treated with standard chemotherapy. However, less-differentiated blastemal type of WT often relapses. To model the high-risk WT for therapeutic intervention, we introduce pluripotency factors into WiT49, a mixed-type WT cell line, to generate partially reprogrammed cells, namely WiT49-PRCs. When implanted into the kidney capsule in mice, WiT49-PRCs form kidney tumors and develop both liver and lung metastases, whereas WiT49 tumors do not metastasize. Histological characterization and gene expression signatures demonstrate that WiT49-PRCs recapitulate blastemal-predominant WTs. Moreover, drug screening in isogeneic WiT49 and WiT49-PRCs leads to the identification of epithelial- or blastemal-predominant WT-sensitive drugs, whose selectivity is validated in patient-derived xenografts (PDXs). Histone deacetylase (HDAC) inhibitors (e.g., panobinostat and romidepsin) are found universally effective across different WT and more potent than doxorubicin in PDXs. Taken together, WiT49-PRCs serve as a blastemal-predominant WT model for therapeutic intervention to treat patients with high-risk WT.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Renais , Tumor de Wilms , Tumor de Wilms/patologia , Tumor de Wilms/genética , Tumor de Wilms/tratamento farmacológico , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Renais/patologia , Neoplasias Renais/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças
2.
Pharmacol Res ; 208: 107410, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276955

RESUMO

Histone deacetylases (HDACs) are zinc-dependent deacetylases that remove acetyl groups from lysine residues of histones or form protein complexes with other proteins for transcriptional repression, changing chromatin structure tightness, and inhibiting gene expression. Recent in vivo and in vitro studies have amply demonstrated the critical role of HDACs in the cell biology of the nervous system during both physiological and pathological processes and have provided new insights into the conduct of research on neurological disease targets. In addition, in vitro and in vivo studies on HDAC inhibitors show promise for the treatment of various diseases. This review summarizes the regulatory mechanisms of HDAC and the important role of its downstream targets in nervous system diseases, and summarizes the therapeutic mechanisms and efficacy of HDAC inhibitors in various nervous system diseases. Additionally, the current pharmacological situation, problems, and developmental prospects of HDAC inhibitors are described. A better understanding of the pathogenic mechanisms of HDACs in the nervous system may reveal new targets for therapeutic interventions in diseases and help to relieve healthcare pressure through preventive measures.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Doenças do Sistema Nervoso , Humanos , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Animais , Histona Desacetilases/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia
3.
Mol Med Rep ; 30(6)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39329199

RESUMO

Graves' orbitopathy (GO), a manifestation of Graves' disease, is characterized by orbital fibroblast­induced inflammation, leading to fibrosis or adipogenesis. Histone deacetylase (HDAC) serves a central role in autoimmune diseases and fibrosis. The present study investigated HDAC inhibition in orbital fibroblasts from patients with GO to evaluate its potential as a therapeutic agent. Primary cultured orbital fibroblasts were treated with an HDAC inhibitor, panobinostat, under the stimulation of IL­1ß, TGF­ß or adipogenic medium. Inflammatory cytokines, and fibrosis­ and adipogenesis­related proteins were analyzed using western blotting. The effects of panobinostat on HDAC mRNA expression were measured in GO orbital fibroblasts, and specific HDACs were inhibited using small interfering RNA transfection. Panobinostat significantly reduced the IL­1ß­induced production of inflammatory cytokines and TGF­ß­induced production of fibrosis­related proteins. It also suppressed adipocyte differentiation and adipogenic transcription factor production. Furthermore, it significantly attenuated HDAC7 mRNA expression in GO orbital fibroblasts. In addition, the silencing of HDAC7 led to anti­inflammatory and anti­fibrotic effects. In conclusion, by inhibiting HDAC7 gene expression, panobinostat may suppress the production of inflammatory cytokines, profibrotic proteins and adipogenesis in GO orbital fibroblasts. The present in vitro study suggested that HDAC7 could be a potential therapeutic target for inhibiting the inflammatory, adipogenic and fibrotic mechanisms of GO.


Assuntos
Fibroblastos , Oftalmopatia de Graves , Inibidores de Histona Desacetilases , Histona Desacetilases , Humanos , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/tratamento farmacológico , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/patologia , Inibidores de Histona Desacetilases/farmacologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Células Cultivadas , Panobinostat/farmacologia , Citocinas/metabolismo , Adipogenia/efeitos dos fármacos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular/efeitos dos fármacos , Interleucina-1beta/metabolismo
4.
Cancers (Basel) ; 16(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123441

RESUMO

The current 5-year survival rate of pancreatic cancer is about 12%, making it one of the deadliest malignancies. The rapid metastasis, acquired drug resistance, and poor patient prognosis necessitate better therapeutic strategies for pancreatic ductal adenocarcinoma (PDAC). Multiple studies show that combining chemotherapeutics for solid tumors has been successful. Targeting two distinct emerging hallmarks, such as non-mutational epigenetic changes by panobinostat (Pan) and delayed cell cycle progression by abemaciclib (Abe), inhibits pancreatic cancer growth. HDAC and CDK4/6 inhibitors are effective but are prone to drug resistance and failure as single agents. Therefore, we hypothesized that combining Abe and Pan could synergistically and lethally affect PDAC survival and proliferation. Multiple cell-based assays, enzymatic activity experiments, and flow cytometry experiments were performed to determine the effects of Abe, Pan, and their combination on PDAC cells and human dermal fibroblasts. Western blotting was used to determine the expression of cell cycle, epigenetic, and apoptosis markers. The Abe-Pan combination exhibited excellent efficacy and produced synergistic effects, altering the expression of cell cycle proteins and epigenetic markers. Pan, alone and in combination with Abe, caused apoptosis in pancreatic cancer cells. Abe-Pan co-treatment showed relative safety in normal human dermal fibroblasts. Our novel combination treatment of Abe and Pan shows synergistic effects on PDAC cells. The combination induces apoptosis, shows relative safety, and merits further investigation due to its therapeutic potential in the treatment of PDAC.

5.
Clin Epigenetics ; 16(1): 102, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097736

RESUMO

BACKGROUND: Oesophageal cancer remains a challenging disease with high mortality rates and few therapeutic options. In view of these difficulties, epigenetic drugs have emerged as potential alternatives for patient care. The goal of this study was to evaluate the effect and biological consequences of Panobinostat treatment, an HDAC (histone deacetylase) inhibitor already approved for treatment of patients with multiple myeloma, in oesophageal cell lines of normal and malignant origin, with the latter being representative of the two main histological subtypes: adenocarcinoma and squamous cell carcinoma. RESULTS: Panobinostat treatment inhibited growth and hindered proliferation, colony formation and invasion of oesophageal cancer cells. Considering HDAC tissue expression, HDAC1 was significantly upregulated in normal oesophageal epithelium in comparison with tumour tissue, whereas HDAC3 was overexpressed in oesophageal cancer compared to non-malignant mucosa. No differences between normal and tumour tissue were observed for HDAC2 and HDAC8 expression. CONCLUSIONS: Panobinostat exposure effectively impaired malignant features of oesophageal cancer cells. Because HDAC3 was shown to be overexpressed in oesophageal tumour samples, this epigenetic drug may represent an alternative therapeutic option for oesophageal cancer patients.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Proliferação de Células , Neoplasias Esofágicas , Inibidores de Histona Desacetilases , Histona Desacetilases , Panobinostat , Humanos , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Panobinostat/administração & dosagem , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proliferação de Células/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Proteínas Repressoras/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia
6.
Int J Hematol ; 120(3): 325-336, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954186

RESUMO

Basic research to expand treatment options for multiple myeloma is greatly needed due to the refractory nature of the disease. Histone deacetylase (HDAC) inhibitors, which are epigenetic regulators, are attractive but have limited applications. MicroRNAs (miRNAs), which are also epigenetic regulators, are important molecules that may lead to future therapeutic breakthroughs. In this study, we comprehensively searched for miRNAs that are altered by HDAC inhibitors in myeloma cells. We identified miR-7-5p (miR-7) as a miRNA downregulated by HDAC inhibitors. Transfection of myeloma cell lines with miR-7 suppressed cell proliferation, induced apoptosis, and enhanced the effects of the HDAC inhibitor panobinostat. Expression of miR-7 was downregulated by c-Myc inhibition, but upregulated by bortezomib. Comprehensive examination of miR-7 targets revealed four candidates: SLC6A9, LRRC59, EXOSC2, and PSME3. Among these, we focused on PSME3, an oncogene involved in proteasome capacity in myeloma cells. PSME3 knockdown increases myeloma cell death and panobinostat sensitivity. In conclusion, miR-7, which is downregulated by HDAC inhibitors, is a tumor suppressor that targets PSME3. This miR-7 downregulation may be involved in HDAC inhibitor resistance. In addition, combinations of anti-myeloma drugs that complement changes in miRNA expression should be considered.


Assuntos
Apoptose , Bortezomib , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases , MicroRNAs , Mieloma Múltiplo , Panobinostat , MicroRNAs/genética , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Panobinostat/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Ácidos Hidroxâmicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
J Colloid Interface Sci ; 673: 291-300, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38875795

RESUMO

Breast cancers that overexpress human epidermal growth factor receptor 2 (HER2) have poor prognosis. Moreover, available chemotherapies cause numerous side effects due to poor selectivity. To advance more effective and safer therapies for HER2-positive breast cancer, we explored the fusion of drug delivery technology and immunotherapy. Our research led to the design of immunocubosomes loaded with panobinostat and functionalized with trastuzumab antibodies, enabling precise targeting of breast cancer cells that overexpress HER2. We characterised the nanostructure of cubosomes using small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS). Moreover, we confirmed the integrity of the trastuzumab antibodies on the immunocubosomes by Fourier-transform infrared spectroscopy (FTIR) and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, we found that panobinostat-loaded immunocubosomes were more cytotoxic, and in an uptake-dependant manner, towards a HER2-positive breast cancer cell line (SKBR3) compared to a cell line representing healthy cells (L929). These results support that the functionalization of cubosomes with antibodies enhances both the effectiveness of the loaded drug and its selectivity for targeting HER2-positive breast cancer cells.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Trastuzumab , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Trastuzumab/química , Trastuzumab/farmacologia , Feminino , Sobrevivência Celular/efeitos dos fármacos , Panobinostat/farmacologia , Panobinostat/química , Linhagem Celular Tumoral , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos
8.
Cell Biosci ; 14(1): 68, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824577

RESUMO

BACKGROUND: Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS: We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS: TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.

9.
Mol Ther Oncol ; 32(1): 200771, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596309

RESUMO

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.

10.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637883

RESUMO

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Tumores Neuroendócrinos/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Transdução de Sinais
11.
Biochem Pharmacol ; 228: 116065, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38373594

RESUMO

The majority of acute myeloid leukemia (AML) patients respond to intensive induction therapy, consisting of cytarabine (AraC) and an anthracycline, though more than half experience relapse. Relapsed/refractory (R/R) AML patients are difficult to treat, and their clinical outcomes remain dismal. Venetoclax (VEN) in combination with azacitidine (AZA) has provided a promising treatment option for R/R AML, though the overall survival (OS) could be improved (OS ranges from 4.3 to 9.1 months). Overexpression of c-Myc is associated with chemoresistance in AML. Histone deacetylase (HDAC) inhibitors have been shown to suppress c-Myc and enhance the antileukemic activity of VEN, as well as AZA, though combination of all three has not been fully explored. In this study, we investigated the HDAC inhibitor, panobinostat, in combination with VEN + AZA against AraC-resistant AML cells. Panobinostat treatment downregulated c-Myc and Bcl-xL and upregulated Bim, which enhanced the antileukemic activity of VEN + AZA against AraC-resistant AML cells. In addition, panobinostat alone and in combination with VEN + AZA suppressed oxidative phosphorylation and/or glycolysis in AraC-resistant AML cells. These findings support further development of panobinostat in combination with VEN + AZA for the treatment of AraC-resistant AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Compostos Bicíclicos Heterocíclicos com Pontes , Citarabina , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Panobinostat , Sulfonamidas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Sulfonamidas/farmacologia , Sulfonamidas/administração & dosagem , Panobinostat/farmacologia , Panobinostat/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Azacitidina/farmacologia , Azacitidina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Citarabina/farmacologia , Citarabina/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/administração & dosagem
12.
Cell ; 187(5): 1238-1254.e14, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38367616

RESUMO

CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.


Assuntos
Infecções por HIV , HIV-1 , Inibidores de Histona Desacetilases , Interferon-alfa , Panobinostat , Provírus , Humanos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Panobinostat/uso terapêutico , Provírus/efeitos dos fármacos , Latência Viral , Inibidores de Histona Desacetilases/uso terapêutico , Interferon-alfa/uso terapêutico
13.
CNS Neurosci Ther ; 30(2): e14366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37485655

RESUMO

AIMS: PSMD family members, as important components of the 26S proteasome, are well known to be involved in protein degradation. However, their role in glioblastoma (GBM) has not been rigorously investigated. We aimed to perform systematic analysis of the expression signature, prognostic significance and functions of PSMD family genes in GBM to reveal potential prognostic markers and new therapeutic targets among PSMD family members. METHODS: In this study, we systemically analyzed PSMD family members in terms of their expression profiles, prognostic implications, DNA methylation levels, and genetic alterations; the relationships between their expression levels and immune infiltration and drug sensitivity; and their potential functional enrichment in GBM through bioinformatics assessment. Moreover, in vitro and in vivo experiments were used to validate the biological functions of PSMD9 and its targeted therapeutic effect in GBM. RESULTS: The mRNA levels of PSMD5/8/9/10/11/13/14 were higher in GBM than in normal brain tissues, and the mRNA levels of PSMD1/4/5/8/9/11/12 were higher in high-grade glioma (WHO grade III & IV) than in low-grade glioma (WHO grade II). High mRNA expression of PSMD2/6/8/9/12/13/14 and low mRNA expression of PSMD7 were associated with poor overall survival (OS). Multivariate Cox regression analysis identified PSMD2/5/6/8/9/10/11/12 as independent prognostic factors for OS prediction. In addition, the protein-protein interaction network and gene set enrichment analysis results suggested that PSMD family members and their interacting molecules were involved in the regulation of the cell cycle, cell invasion and migration, and other biological processes in GBM. In addition, knockdown of PSMD9 inhibited cell proliferation, invasion and migration and induced G2/M cell cycle arrest in LN229 and A172 GBM cells. Moreover, PSMD9 promoted the malignant progression of GBM in vivo. GBM cell lines with high PSMD9 expression were more resistant to panobinostat, a potent deacetylase inhibitor, than those with low PSMD9 expression. In vitro and in vivo experiments further validated that PSMD9 overexpression rescued the GBM inhibitory effect of panobinostat. CONCLUSION: This study provides new insights into the value of the PSMD family in human GBM diagnosis and prognosis evaluation, and we further identified PSMD9 as a potential therapeutic target. These findings may lead to the development of effective therapeutic strategies for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Panobinostat , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioma/genética , Prognóstico , Fatores de Transcrição/genética , RNA Mensageiro/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
Toxicol Appl Pharmacol ; 482: 116786, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086440

RESUMO

Histone deacetylase (HDAC) inhibitors diminish carcinogenesis, metastasis, and cancer cell proliferation by inducing death in cancer cells. Tissue regeneration and organ development are highly dependent on the Hippo signaling pathway. Targeting the dysregulated hippo pathway is an excellent approach for cancer treatment. According to the results of this study, the combination of panobinostat, a histone deacetylase inhibitor, and 5-fluorouracil (5-FU), a chemotherapy drug, can act synergistically to induce apoptosis in gastric cancer cells. The combination of panobinostat and 5-FU was more effective in inhibiting cell viability than either treatment alone by elevating the protein levels of cleaved PARP and cleaved caspase-9. By specifically targeting E-cadherin, vimentin, and MMP-9, the combination of panobinostat and 5-FU significantly inhibited cell migration. Additionally, panobinostat significantly increased the anticancer effects of 5-FU by activating Hippo signaling (Mst 1 and 2, Sav1, and Mob1) and inhibiting the Akt signaling pathway. As a consequence, there was a decrease in the amount of Yap protein. The combination therapy of panobinostat with 5-FU dramatically slowed the spread of gastric cancer in a xenograft animal model by deactivating the Akt pathway and supporting the Hippo pathway. Since combination treatment exhibits much higher anti-tumor potential than 5-FU alone, panobinostat effectively potentiates the anti-tumor efficacy of 5-FU. As a result, it is believed that panobinostat and 5-FU combination therapy will be useful as supplemental chemotherapy in the future.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Gástricas , Animais , Humanos , Inibidores de Histona Desacetilases/uso terapêutico , Panobinostat/farmacologia , Fluoruracila/farmacologia , Via de Sinalização Hippo , Neoplasias Gástricas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/farmacologia , Indóis/farmacologia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
15.
Acta Pharmacol Sin ; 45(4): 867-878, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114644

RESUMO

Osimertinib (Osi) is widely used as a first-line treatment for non-small cell lung cancer (NSCLC) with EGFR mutations. However, the majority of patients treated with Osi eventually relapse within a year. The mechanisms of Osi resistance remain largely unexplored, and efficient strategies to reverse the resistance are urgently needed. Here, we developed a lactoferrin-modified liposomal codelivery system for the combination therapy of Osi and panobinostat (Pan), an epigenetic regulator of histone acetylation. We demonstrated that the codelivery liposomes could efficiently repolarize tumor-associated macrophages (TAM) from the M2 to M1 phenotype and reverse the epithelial-mesenchymal transition (EMT)-associated drug resistance in the tumor cells, as well as suppress glycolysis, lactic acid production, and angiogenesis. Our results suggested that the combination therapy of Osi and Pan mediated by liposomal codelivery is a promising strategy for overcoming Osi resistance in NSCLC.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Indóis , Neoplasias Pulmonares , Panobinostat , Inibidores de Proteínas Quinases , Pirimidinas , Humanos , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
16.
Front Vet Sci ; 10: 1236136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711439

RESUMO

Introduction: Cancer is a major public health problem with over 19 million cases reported in 2020. Similarly to humans, dogs are also largely affected by cancer, with non-Hodgkin's lymphoma (NHL) among the most common cancers in both species. Comparative medicine has the potential to accelerate the development of new therapeutic options in oncology by leveraging commonalities between diseases affecting both humans and animals. Within this context, in the present study, we investigated the potential of panobinostat (Pan)-loaded folate-targeted PEGylated liposomes (FA-PEG-Pan-Lip) for the treatment of canine B-cell lymphoma, while contributing to new perspectives in comparative oncology. Methods and results: Two formulations were developed, namely: PEG-Pan-Lip and FA-PEG-Pan-Lip. Firstly, folate receptor expression in the CLBL-1 canine B-cell lymphoma cell line was assessed. After confirming receptor expression, both Pan-loaded formulations (PEG-Pan-Lip, FA-PEG-Pan-Lip) demonstrated dose-dependent inhibitory effects on CLBL-1 cell proliferation. The FA-PEG-Pan-Lip formulation (IC50 = 10.9 ± 0.03 nM) showed higher cytotoxicity than the non-targeted PEG-Pan-Lip formulation (IC50 = 12.9 ± 0.03 nM) and the free panobinostat (Pan) compound (IC50 = 18.32±0.03 nM). Moreover, mechanistically, both Pan-containing formulations induced acetylation of H3 histone and apoptosis. Flow cytometry and immunofluorescence analysis of intracellular uptake of rhodamine-labeled liposome formulations in CLBL-1 cells confirmed cellular internalization of PEG-Lip and FA-PEG-Lip formulations and higher uptake profile for the latter. Biodistribution studies of both radiolabeled formulations in CD1 and SCID mice revealed a rapid clearance from the major organs and a 1.6-fold enhancement of tumor uptake at 24 h for 111In-FA-PEG-Pan-Lip (2.2 ± 0.1 %ID/g of tumor) compared to 111In-PEG-Pan-Lip formulation (1.2±0.2 %ID/g of tumor). Discussion: In summary, our results provide new data validating Pan-loaded folate liposomes as a promising targeted drug delivery system for the treatment of canine B-cell lymphoma and open innovative perspectives for comparative oncology.

17.
BMC Pharmacol Toxicol ; 24(1): 45, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740231

RESUMO

PURPOSE: The study aims to investigate the apoptotic effects of combining LBH589 and AM1241 (a selective CB2 receptor agonist) on cervical cancer cells and elucidating the mechanism of this combined therapy, which may provide innovative strategies for treating this disease. METHODS: The viability of the cervical cancer cells was measured by cell counting kit-8 (CCK-8) assay, and the synergistic effect was analyzed using SynergyFinder. Cell proliferation was tested by cell cloning. The apoptosis and reactive oxygen species (ROS) production in cervical cancer cells were analyzed by flow cytometry. Western blot and quantitative real-time PCR (qRT-PCR) were employed to determine changes in protein and gene levels of pathway-related factors. RESULTS: By the results of cytotoxicity assay, SiHa cells were selected and treated with 0.1 µM LBH589 and 4 µM AM1241 for 24 h for subsequent experiments. The combination of both was synergistic as determined by bliss, ZIP, HSA and LOEWE synergy score. Plate cloning results showed that LBH589 combined with AM1241 inhibited the proliferation of cervical cancer cells compared to individual drug. Additionally, compared with LBH589 alone, the combination of LBH589 and AM1241 induced autophagy by increasing LC3II/LC3I and decreasing P62/GAPDH, leading to a significantly higher rate of apoptosis. Pharmacological inhibition of also inhibited apoptosis. Consistently, we found that the endoplasmic reticulum, DNA damage repair pathway were induced after co-administration. Furthermore, cellular ROS increased after co-administration, and apoptosis was inhibited by the addition of ROS scavenger. CONCLUSION: LBH589 combined with AM1241 activated the endoplasmic reticulum emergency pathway, DNA damage repair signaling pathway, oxidative stress and autophagy pathway, ultimately promoting the apoptosis of cervical cancer cells. These findings suggest that the co-administration of LBH589 and AM1241 may be a new treatment plan for the treatment of cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Panobinostat/farmacologia , Espécies Reativas de Oxigênio , Apoptose , Autofagia
18.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370721

RESUMO

Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a poor prognosis resulting in high relapse rates and low chemotherapy efficacy. Novel targeted approaches are needed to increase sensitivity to chemotherapy. Recent studies have shown how interactions within the bone marrow (BM) microenvironment help AML cells evade chemotherapy and contribute to relapse by promoting leukemic blast survival. This study investigates how DNA hypomethylating agent azacitidine and histone deacetylase inhibitor panobinostat synergistically overcome BM niche-induced chemoprotection modulated by stromal, endothelial, and mesenchymal stem cells and the extracellular matrix (ECM). We show that direct contact between AML cells and BM components mediates chemoprotection. We demonstrate that azacitidine and panobinostat synergistically sensitize MV4;11 cells and KMT2A rearranged pediatric patient-derived xenograft lines to cytarabine in multicell coculture. Treatment with the epigenetic drug combination reduced leukemic cell association with multicell monolayer and ECM in vitro and increased mobilization of leukemic cells from the BM in vivo. Finally, we show that pretreatment with the epigenetic drug combination improves the efficacy of chemotherapy in vivo.

19.
Biomed Pharmacother ; 164: 114886, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224752

RESUMO

Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias , Panobinostat , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Histonas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Panobinostat/farmacologia , Resultado do Tratamento , Microambiente Tumoral , Estados Unidos , Epigênese Genética
20.
Indian J Hematol Blood Transfus ; 39(2): 245-257, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37006981

RESUMO

Multiple myeloma is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. The Overexpression of histone deacetylase prevents apoptosis of myeloma cells by different mechanisms. The combination of Panobinostat with a BH3 mimetic, S63845, has demonstrated significant antitumor activity in multiple myeloma. We examined the impact of Panobinostat combined with MCL-1 inhibitor on multiple myeloma cell lines in vivo and in vitro as well as on fresh human myeloma cells. Our study shows that MCL-1 remains a major resistant factor to cell death induced by Panobinostat. Therefore, the inhibition of the MCL-1 member is considered a therapeutic strategy to kill the myeloma cells. We examined that the MCL-1 inhibitor (S63845) enhanced the cytotoxic effect of Panobinostat and decreased the viability of human cell lines and primary myeloma patient cells. Mechanistically, Panobinostat/S63845 control cell death via an intrinsic pathway. Given these data, the combination can be a promising therapeutic target for myeloma patients and should be further explored in clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA