Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Water Res ; 267: 122414, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39303581

RESUMO

Estrogenic transformation products (TPs) generated after water chlorination can be considered as an environmental and health concern, since they can retain and even increase the estrogenicity of the parent compound, thus posing possible risks to drinking water safety. Identification of the estrogenic TPs generated from estrogenic precursor during water chlorination is important. Herein, butylparaben (BuP), which was widely used as preservative in food, pharmaceuticals and personal care products (PPCPs), was selected for research. A simplified effect-based analysis (EDA) approach was applied for the identification of estrogenic TPs generated during BuP chlorination. Despite the removal of BuP corresponds to the decrease of estrogenicity in chlorinated samples, an significant increase of estrogenicity was observed (at T = 30 min, presented an estrogenicity equivalent to 17ß-estradiol). Chemical analysis of the estrogenic chlorinated samples that have been previously subjected to biological analysis (in vitro assays), in combination with the principal component analysis (PCA) evaluation, followed by validating the estrogenic potency of most relevant estrogenic TPs through an in silico approach (molecular dynamics simulations), identified that the halogenated TP3 (3,5-Dichloro-butylparaben) increased by 62.5 % and 61.8 % of the estrogenic activity of the parent compound in samples chlorinated with 30 min and 1 h, respectively being classified as a potentially estrogenic activity driver after BuP chlorination. This study provides a scientific basis for the more comprehensive assessment of the environmental and health risk associated with BuP chlorination, highlighting the necessity of identifying the unknown estrogenic TPs generateded from estrogenic precursors chlorination.

2.
Environ Int ; 192: 109032, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317008

RESUMO

Ingestion of breast milk represents the primary exposure pathway for endocrine-disrupting chemicals (EDCs) in newborns. To elucidate the associated risks, it is essential to quantify EDC levels in both breast milk and infant urine. This study measured the concentrations of 13 EDCs, including parabens (methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), iso-propyl paraben, butyl paraben, and iso-butyl paraben), bisphenols (bisphenol A (BPA), bisphenol F, bisphenol S, bisphenol AF, and bisphenol Z), triclosan (TCS), and triclocarban, in breast milk and infant urine to assess their potential health effects and endocrine disruption risks. In total, 1 014 breast milk samples were collected from 20 cities across China, along with 144 breast milk samples and 134 urine samples from a mother-infant cohort in Hangzhou. The EDCs were detected using ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry. Endocrine-disrupting potency was evaluated using a predictive method based on EDC affinity for 15 hormone receptor proteins. The toxicological priority index (ToxPi), incorporating population exposure data, was employed to assess health risks associated with exposure to multiple EDCs. Among the 13 EDCs, MP, EP, PP, BPA, and TCS were detected in over 50 % of breast milk samples, with the highest median concentrations observed for MP (0.37 ng/mL), EP (0.29 ng/mL), and BPA (0.17 ng/mL). Across the 20 cities, 0 %-40 % of infants had a hazard index (HI) exceeding 1. Based on affinity prediction analysis and estimated exposure, cumulative endocrine disruption risk intensity was ranked as MP > TCS > BPA > EP > PP. This research highlights the extensive exposure of Chinese infants to EDCs, offering a detailed analysis of their varying endocrine disruption potencies and underscoring the significant health risks associated with EDCs in breast milk.

3.
Int J Environ Health Res ; : 1-20, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300872

RESUMO

Hair relaxers have been suggested as a source of exposure to parabens and phthalates. However, dermally absorbed doses of these chemicals resulting from consumer use of hair relaxers have yet to be quantified, and results from epidemiological studies have consistently demonstrated that there is no increased risk for hormone-sensitive, reproductive cancers associated with use of hair relaxers among Black women. Therefore, dermal absorption of parabens and phthalates associated with hair relaxer use for several commercially available hair relaxer kits was modeled using IH SkinPerm™. The chemicals detected in the hair relaxer kits included methylparaben (MP), ethylparaben (EP), butylparaben (BP), diethyl phthalate (DEP), bis(2-ethylhexyl) phthalate (DEHP), and the phthalate substitute bis(2-ethylhexyl) adipate (DEHA). The daily absorbed dose ranges (mg/kg/day), standardized over a year of product use, were as follows: 8.64 × 10-5-0.00116 MP, 2.30 × 10-8-3.07 × 10-6 EP, 3.24 × 10-8-4.33 × 10-6 BP, 8.65 × 10-9-1.15 × 10-6 DEP, and 8.94 × 10-7-0.000119 DEHP for Kit #1; 8.44 × 10-5-0.00113 MP and 7.91 × 10-5-0.00106 DEP for Kit #2; and 2.49 × 10-6-3.33 × 10-5 MP, 1.52 × 10-8-2.03 × 10-6 EP, 3.29 × 10-9-4.39 × 10-7 DEP, and 3.11 × 10-6-4.14 × 10-5 DEHA for Kit #3. These absorbed doses were well below applicable health-based guidance values, indicating consumer exposure from product use is not expected to pose a health risk. These results provide valuable information for health risk evaluations for hair relaxer use.

4.
J Health Popul Nutr ; 43(1): 138, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227884

RESUMO

INTRODUCTION: Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of natural hormones in the body. The aim of this review article is to highlight the knowledge about EDCs and obesity. METHODS: A scoping review of the electronic literature was performed using PubMed platform for studies on EDCs and obesity published between the years 2013-2023. A total of 10 systematic reviews and meta-analysis studies met our inclusion criteria on more prominent EDCs focusing mainly on bisphenols, including parabens, triclosan, and phthalates, and their association with obesity. DESIGN: Scoping review. RESULTS: EDCs, mostly bisphenols and phthalates, are related to health effects, while there is less information on the impact of parabens and triclosan. A series of negative physiological effects involving obesogenic, diabetogenic, carcinogenic, and inflammatory mechanisms as well as epigenetic and microbiota modulations was related to a prolonged EDCs exposure. A more profound research of particular pollutants is required to illuminate the accelerating effects of particular EDCs, mixtures or their metabolites on the mechanism of the development of obesity. CONCLUSION: Considering the characteristics of EDCs and the heterogeneity of studies, it is necessary to design specific studies of effect tracking and, in particular, education about daily preventive exposure to EDCs for the preservation of long-term public health.


Assuntos
Disruptores Endócrinos , Obesidade , Ácidos Ftálicos , Humanos , Disruptores Endócrinos/efeitos adversos , Obesidade/prevenção & controle , Ácidos Ftálicos/efeitos adversos , Exposição Ambiental/efeitos adversos , Fenóis/efeitos adversos , Parabenos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/toxicidade , Triclosan/efeitos adversos , Compostos Benzidrílicos/efeitos adversos , Feminino
5.
J Hazard Mater ; 480: 135807, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39270590

RESUMO

Parabens are widely used as preservatives in food, pharmaceuticals, and cosmetics due to their excellent antimicrobial activities, cost-effectiveness, and stability. Previous studies have demonstrated their harmful potential and ubiquity in the environment and human tissues. This study revealed profiles of parabens and their metabolites in urine samples from a general population of different ages in China using non-target screening. Metabolism of parabens in human bodies was further explored through the identified metabolites in combination of molecular networking. A total of 34 paraben compounds were screened in the urine samples. In addition to 3 identified confidence level 1 (CL1) parent parabens, 3 CL2 compounds were also identified, namely 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, and ethylparaben sulfate. Furthermore, 6 CL3 compounds were tentatively identified, five of which were sulfonated and sulfated metabolites of parabens. The remaining 22 were CL4 features without certain chemical structures. Hazardousness assessment suggested toxic potential of the identified metabolites. Distribution of the parabens and metabolites in the urines showed age-dependent differences. Sulfonation and sulfation were potentially significant metabolic pathways of the parabens in human bodies. This study provides a new insight into understanding metabolism of parabens in human bodies and potential risks of human exposure to parabens.

6.
Environ Res ; 262(Pt 2): 119944, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39245310

RESUMO

Parabens are common contaminants in river and lake environments. However, few studies have been conducted to determine the effects of parabens on bacteria, phytoplankton, and zooplankton communities in aquatic environments. In this study, the effect of methylparaben (MP) on the diversity and community structure of the aquatic plankton microbiome was investigated by incubating a microcosm with MP at 0.1, 1, 10, and 100 µg/L for 7 days. The results of the Simpson index showed that MP treatment altered the α-diversity of free-living bacteria (FL), phytoplankton, and zooplankton but had no significant effect on the α-diversity of particle-attached bacteria (PA). Further, the relative abundances of the sensitive bacteria Chitinophaga and Vibrionimonas declined after MP addition. Moreover, the relative abundances of Desmodesmus sp. HSJ717 and Scenedesmus armatus, of the phylum Chlorophyta, were significantly lower in the MP treatment group than in the control group. In addition, the relative abundance of Stoeckeria sp. SSMS0806, of the Dinophyta phylum, was higher than that in the control group. MP addition also increased the relative abundance of Arthropoda but decreased the relative abundance of Rotifera and Ciliophora. The ß-diversity analysis showed that FL and phytoplankton communities were clustered separately after treatment with different MP concentrations. MP addition changed community assembly mechanisms in the microcosm, including increasing the stochastic processes for FL and the deterministic processes for PA and phytoplankton. Structural equation modeling analysis showed a significant negative relationship between bacteria richness and phytoplankton richness, and a significant positive relationship between phytoplankton (richness and community composition) and zooplankton. Overall, this study emphasizes that MP, at environmental concentrations, can change the diversity and structure of plankton microbial communities, which might have a negative effect on ecological systems.

7.
Vet Res Commun ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259415

RESUMO

There is a growing regulatory and scientific interest in the studies of environmental substances that are capable of interfering with the reproductive system. Among them, parabens stand out due to their widespread use and frequent detection as contaminants in human tissues and biological fluids. Therefore, we evaluated the toxic effects of butylparaben on the viability and follicular staging of bovine ovarian follicles in vitro. Fragments of ovaries from five cyclic bovine females were cultured for 44 h in a minimal essential medium (MEM; control) or MEM supplemented with 50 µg/mL and 100 µg/mL of butylparaben (BP 50 and BP 100 groups, respectively). The ovarian fragments were subjected to follicular staging, morphological analysis, morphometric analysis, estradiol analysis and oxidative profiling. No significant changes were observed between the experimental groups in follicular staging, estradiol analysis and oxidative profile analysis. However, the BP 50 group showed a significant decrease in the number of intact ovarian follicles. Moreover, a decrease in the follicular and oocyte diameters was observed in the groups that were exposed to butylparaben. In conclusion, butylparaben impairs the integrity and size of ovarian follicles in an in vitro bovine model, but does not affect the oxidative profile and steroidogenesis.

8.
Water Res ; 265: 122269, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178595

RESUMO

Parabens are classified as emerging contaminants in global waters, and the ubiquitous emergence of their high-risk chlorinated products generated from chlorine-based wastewater disinfection has attracted increasing attention. However, rather limited information is available on their photofate after discharging into surface waters, and their degradation behavior after solar-based engineering water treatment is unclear. Herein, the reactivity of four chlorinated parabens with different photochemically produced reactive intermediates was measured. Quantitative contribution analysis in abating such compounds showed the dominance of direct photolysis in sunlit natural freshwaters. Introducing a technical solar/peroxymonosulfate (PMS) system could greatly improve the removal of chlorinated parabens. The economic analysis suggested that chlorinated parabens exhibited a minimum value of economic input as 93.41-158.04 kWh m-3 order-1 at 0.543-0.950 mM PMS. The high-resolution mass spectrometry analysis of the degradation products suggested that dechlorination, hydroxylation, and ester chain cleavage were the dominant transformation pathways during photolysis and solar/PMS treatment. Furthermore, the in silico prediction indicated severe aquatic toxicity of certain products but enhanced biodegradability. Overall, this investigation filled a knowledge gap on the reactivity of chlorinated parabens with diverse reactive transients and their quantitative contributions to the photolysis and solar/PMS treatment of emerging micropollutants in water.


Assuntos
Parabenos , Fotólise , Luz Solar , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Parabenos/química , Purificação da Água , Halogenação , Águas Residuárias/química
9.
Chemosphere ; 364: 143099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146988

RESUMO

Biocides are present in personal care (including preservatives or antibacterials), pest control, and disinfectant products (including non-agricultural insecticides, fungicides, and disinfectants), and their long-term exposure may induce adverse health effects in humans. Therefore, in this study, we assessed the exposure levels and major exposure predictors of biocides among nationally representative Korean adults. The target group included adults (≥19 years) participating in the Korean National Environmental Health Survey (KoNEHS) 2015-2020. We employed survey-weighted multiple regression analysis and conditional inference trees analysis to assess the associations between demographic characteristics, behavioral sources (including personal care product use, pesticide use, and dietary patterns), and urinary levels of phenol (triclosan [TCS]), parabens (methyl paraben [MP], ethyl paraben [EP], propyl paraben [PP], and butyl paraben [BP]), and the pyrethroid insecticide metabolite (3-phenoxybenzoic acid [3-PBA]). Urinary EP, BP, and 3-PBA levels were higher in South Korean adults compared with those in Western countries. Major exposure predictors for MP, EP, and PP included the use of personal care products such as sunscreen, makeup, and hair care products in KoNEHS 2018-2020. Major exposure predictors for TCS and BP were vegetable consumption, and those for 3-PBA were mosquitocide use during summer in KoNEHS 2018-2020. However, these predictors were not observed in KoNEHS 2015-2017. Collectively, our findings suggest that biocide exposure predictors vary according to changes in product use and diet habits of individuals. Therefore, developing strategies to mitigate biocide exposure based on the demographic and behavioral characteristics of the general population is imperative.


Assuntos
Desinfetantes , Exposição Ambiental , Parabenos , República da Coreia , Humanos , Desinfetantes/análise , Adulto , Feminino , Pessoa de Meia-Idade , Exposição Ambiental/estatística & dados numéricos , Masculino , Parabenos/análise , Adulto Jovem , Triclosan/urina , Triclosan/análise , Idoso , Praguicidas/análise , Praguicidas/urina , Benzoatos
10.
Environ Toxicol Chem ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172001

RESUMO

Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used as preservatives in personal care products such as cosmetics. Recent studies have revealed the presence of parabens in surface and tap water because of their use as disinfection products; however, little is known about their occurrence in biological samples and their bioaccumulation potential, particularly in raptor birds known as sentinels for pollutant detection. We examined the occurrence and tissue distribution of parabens, their metabolites, and halogenated byproducts in the liver, kidney, brain, and muscle of birds of prey from Texas and North Carolina (USA). Methylparaben (MeP), propylparaben (PrP), and butylparaben (BuP) were detected in more than 50% of all tissues examined, with the kidney exhibiting the highest concentration of MeP (0.65-6.84 ng/g wet wt). Para-hydroxybenzoic acid (PHBA), a primary metabolite, had the highest detection frequency (>50%) and a high accumulation range in the liver, of 4.64 to 12.55 ng/g. The chlorinated compounds chloromethylparaben and chloroethylparaben were found in over half of the tissues, of which dichloromethylparaben (2.20-3.99 ng/g) and dichloroethylparaben (1.01-5.95 ng/g) in the kidney exhibited the highest concentrations. The dibrominated derivatives dibromideethylparaben (Br2EtP) was detected in more than 50% of samples, particularly in muscle and brain. Concentrations in the range of 0.14 to 17.38 ng/g of Br2EtP were detected in the kidney. Dibromidepropylparaben (Br2PrP) was not frequently detected, but concentrations ranged from 0.09 to 21.70 ng/g in muscle. The accumulations of total amounts (sum) of parent parabens (∑P), metabolites (∑M), and halogenated byproducts (∑H) in different species were not significantly different, but their distribution in tissues differed among the species. Positive correlations were observed among MeP, PrP, BuP, and PHBA in the liver, suggesting similar origins and metabolic pathways. Environ Toxicol Chem 2024;00:1-12. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

11.
Environ Res ; : 119835, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39181298

RESUMO

Dyslipidemia is a prevalent metabolic disorder in older adults and has negative effects on cardiovascular health. However, the combined effect of paraben, bisphenol A (BPA), and triclosan (TCS) exposure on dyslipidemia and the underlying mechanisms remain unclear. This cross-sectional study recruited 486 individuals ≥60 years in Shenzhen, China. Morning spot urine samples were collected and analyzed for four parabens, BPA, TCS, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), a typical biomarker for oxidative stress, using mass spectrometry. Blood samples were tested for lipid levels using an automated biochemical analyzer. Quantile-based g-computation (QGC) was used to assess the combined effects of exposures on dyslipidemia. Mediation analysis was applied to investigate the mediating role of 8-OHdG between exposure and dyslipidemia. QGC showed that co-exposure to parabens, BPA, and TCS was positively linked with hypercholesterolemia (OR: 1.17, 95%CI: 1.10-1.24, P<0.001) and hyper-LDL-cholesterolemia (OR: 1.35, 95%CI: 1.05-1.75, P=0.019). Methylparaben (MeP), n-propyl paraben (PrP), and butylparaben (BtP) were the major contributors. 8-OHdG mediated 6.5% and 13.0% of the overall effect of the examined chemicals on hypercholesterolemia and hyper-LDL-cholesterolemia, respectively (all P<0.05). Our study indicated that co-exposure to parabens, BPA, and TCS is associated with dyslipidemia and oxidative stress partially mediate the association. Future research is needed to explore additional mechanisms underlying these relationships.

12.
Environ Toxicol Pharmacol ; 111: 104549, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39208995

RESUMO

Endocrine disrupting chemicals (EDCs) may impact children's health, with medicines as a possible exposure source. Objective: to assess the potential impact of substances in paediatric medications and essential oils on children as EDC. It is a systematic review of five databases including Medline following the PECOT approach. The review focused on publications about children exposed to medication (active ingredients or excipients of interest) and having developed clinical signs of endocrine dysfunction. Out of 946 studies identified, 28 studies were included. They revealed that parabens, lavender essential oils and anti-epileptics are the most identified pharmaceutical products. The reported outcomes relate to puberty, thyroid disorders, obesity and growth. The evidence indicates potential risks, but the overall quality of available data is limited. This systematic review exposes a lack of robust evidence linking paediatric medication exposure to EDC, predominantly relying on case reports. It cautions about potential conflicts of interest.

13.
Se Pu ; 42(9): 827-836, 2024 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-39198942

RESUMO

Bisphenols (BPs) and parabens (PBs) are of great concern for environmental pollution and human health because of their endocrine-disrupting effects and potential health hazards. Urinary biomonitoring of BPs and PBs can provide basic data for human internal exposure evaluation, which is a prerequisite for accurately assessing their health risks. In this study, we developed a new pretreatment procedure based on solid supported liquid-liquid extraction (SLE) for the simultaneous separation of ten BPs and five PBs in human urine, followed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. In the instrumental analysis, the HPLC conditions and MS/MS parameters were comprehensively optimized. Accurate qualitative and quantitative determination of ten BPs and five PBs was achieved by introducing a ternary gradient elution system of water, methanol, and acetonitrile for LC separation. During sample pretreatment, the extraction solvent and elution volume were optimized. Specifically, urine samples were held at room temperature and centrifuged at 3000 r/min for 10 min. The supernatant (2 mL) was then transferred to a glass tube, and the pH was adjusted to 5.0 using HCl (0.5 mL; 0.1 mol/L) and NaAc-HAc buffer (1.5 mL). Thereafter, ß-glucuronidase-arylsulfatase (20 µL) and surrogate standard solutions (10 ng;13C12-BPS,13C12-BPAF,13C6-MeP, and 13C6-BuP) were added, and the mixture was incubated in a shaker bath in the dark at 37 ℃ for 16 h. After incubation, the hydrolyzed sample (4 mL) was loaded onto an SLE cartridge and equilibrated for a minimum of 5 min to ensure the solution was completely absorbed by the packing material. Subsequently, the target chemicals were eluted with a mixed ethyl acetate/n-hexane solution (3∶7, v/v; 15 mL). Separation of the targets was performed on a ZORBAX SB-C18 reversed-phase column (250 mm×4.6 mm, 5 µm) using an acetonitrile-methanol-water system as the mobile phase. The method was verified by spiking mixed urine samples at three levels (1, 5, and 50 µg/L), with the recoveries ranging from 84.3% to 119.8%. Except for bisphenols (BPS), whose matrix effect was calculated as -21.8%, the matrix effects of other analytes were lower than 20%, indicating low matrix interference. The linear ranges of the analytes varied from 0.1-500 µg/L to 1-500 µg/L, with correlation coefficients higher than 0.995. The method limits of quantification for target chemicals ranged from 0.03 to 0.30 µg/L, and the relative standard deviations of intra- and inter-day experiments were 1.4%-8.4% and 5.7%-14.6%, respectively, suggesting high stability and reproducibility. The method was successfully applied to the determination of ten BPs and five PBs in 10 urine samples from a general population. The concentrations of target chemicals in the human urine samples varied. Methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and bisphenol A (BPA) were detected in all samples, with median mass concentrations of 1.10, 0.60, 0.21, and 0.55 µg/L, respectively. The detection rates of the other chemicals were less than 50%, which may be related to the production and use of specific chemicals, their bioavailability, and biological metabolism in humans.


Assuntos
Extração Líquido-Líquido , Parabenos , Fenóis , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Humanos , Extração Líquido-Líquido/métodos , Fenóis/urina , Fenóis/análise , Parabenos/análise , Compostos Benzidrílicos/urina , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos
14.
Ecotoxicol Environ Saf ; 283: 116775, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059343

RESUMO

BACKGROUND: The inconsistent relationship between chemical exposure and estimated glomerular filtration rate (eGFR) has been examined in only a few studies. We investigated the association between paraben exposure and indicators of renal function in a total of 361 individuals recruiting from a representative study. METHOD: The levels of urinary parabens, including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP), were measured using UPLC-MS/MS. The association between paraben exposure and indices of renal function was assessed using multiple logistic regression and Bayesian Kernel Machine Regression (BKMR). RESULTS: The median levels of urinary parabens in the adult group were significantly higher than those in the minor group, that is, 397 vs. 148 ng/mL for MeP, 38.8 vs. 13.6 ng/mL for EtP, 117 vs. 57.7 ng/mL for PrP, and 6.61 vs. 2.79 ng/mL for BuP (all P < 0.001). In the adult group, multivariate regression models confirmed a positive association between the albumin-to-creatinine ratio and urinary MeP (ß = 0.580) and a positive association of BUN (ß = 0.061) and a negative association of eGFR (ß = -0.051) with urinary EtP (all P < 0.001). In the adult group, compared with the lowest tertile group, the adjusted odds ratio in the third tertile (T3) of urinary EtP levels indicated a 3.08 times increased risk of eGFR abnormalities, followed by the second tertile (T2) with a 2.63 times increased risk. The generalized additive model (GAM) and BKMR models showed a non-linear correlation between urinary EtP levels and early CKD, as well as reduced eGFR. We observed a significant positive cumulative effect of urinary paraben on eGFR, and a significant positive single exposure effect of urinary EtP with eGFR abnormality. CONCLUSION: We found a significant association between exposure to EtP and an increased risk of high BUN levels and decreased eGFR.


Assuntos
Taxa de Filtração Glomerular , Parabenos , Humanos , Parabenos/análise , Taxa de Filtração Glomerular/efeitos dos fármacos , Feminino , Masculino , Adulto , Taiwan , Pessoa de Meia-Idade , Idoso , Exposição Ambiental/estatística & dados numéricos , Adulto Jovem , Teorema de Bayes , Poluentes Ambientais/urina
15.
Toxicology ; 506: 153873, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986729

RESUMO

Parabens are commonly used preservatives in cosmetics, food, and pharmaceutical products. The objective of this study was to examine the effect of nine parabens on human and rat 17ß-hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian cytosols, as well as on estradiol synthesis in BeWo cells. The results showed that the IC50 values for these compounds varied from methylparaben with the weakest inhibition (106.42 µM) to hexylparaben with the strongest inhibition (2.05 µM) on human 17ß-HSD1. Mode action analysis revealed that these compounds acted as mixed inhibitors. For rats, the IC50 values ranged from the weakest inhibition for methylparaben (no inhibition at 100 µM) to the most potent inhibition for hexylparaben (0.87 µM), and they functioned as mixed inhibitors. Docking analysis indicated that parabens bind to the region bridging the NADPH and steroid binding sites of human 17ß-HSD1 and the NADPH binding site of rat 17ß-HSD1. Bivariate correlation analysis demonstrated negative correlations between LogP, molecular weight, heavy atoms, and apolar desolvation energy, and the IC50 values of these compounds. In conclusion, this study identified the inhibitory effects of parabens and their binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone synthesis.


Assuntos
Estradiol , Simulação de Acoplamento Molecular , Parabenos , Placenta , Parabenos/toxicidade , Animais , Humanos , Ratos , Feminino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Placenta/enzimologia , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , Gravidez , Conservantes Farmacêuticos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/enzimologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Sítios de Ligação , Estradiol Desidrogenases/antagonistas & inibidores , Estradiol Desidrogenases/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-39063482

RESUMO

BACKGROUND: Interventions are needed to help people reduce exposure to harmful chemicals from everyday products and lifestyle habits. Report-back of individual exposures is a potential pathway to increasing environmental health literacy (EHL) and readiness to reduce exposures. OBJECTIVES: Our objective was to determine if report-back of endocrine-disrupting chemicals (EDCs) can reduce EDC exposure, increase EHL, and increase readiness to change (i.e., to implement EDC exposure-reduction behaviors). METHODS: Participants in the Healthy Nevada Project completed EHL and readiness-to-change surveys before (n = 424) and after (n = 174) a report-back intervention. Participants used mail-in kits to measure urinary biomarkers of EDCs. The report-back of results included urinary levels, information about health effects, sources of exposure, and personalized recommendations to reduce exposure. RESULTS: EHL was generally very high at baseline, especially for questions related to the general pollution. For questions related to chemical exposures, responses varied across several demographics. Statistically reliable improvements in EHL responses were seen after report-back. For readiness to change, 72% were already or planning to change their behaviors. Post-intervention, women increased their readiness (p = 0.053), while men decreased (p = 0.007). When asked what challenges they faced in reducing exposure, 79% cited not knowing what to do. This dropped to 35% after report-back. Participants with higher propylparaben were younger (p = 0.03) and women and participants who rated themselves in better health had higher levels of some phthalates (p = 0.02-0.003 and p = 0.001-0.003, respectively). After report-back, monobutyl phthalate decreased among the 48 participants who had valid urine tests before and after the intervention (p < 0.001). CONCLUSIONS: The report-back intervention was successful as evidenced by increased EHL behaviors, increased readiness to change among women, and a decrease in monobutyl phthalate. An EHL questionnaire more sensitive to chemical exposures would help differentiate high and low literacy. Future research will focus on understanding why men decreased their readiness to change and how the intervention can be improved for all participants.


Assuntos
Exposição Ambiental , Letramento em Saúde , Humanos , Nevada , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Exposição Ambiental/análise , Disruptores Endócrinos/urina , Saúde Ambiental , Adulto Jovem , Idoso , Poluentes Ambientais/urina , Poluentes Ambientais/análise , Inquéritos e Questionários , Adolescente
17.
Artigo em Inglês | MEDLINE | ID: mdl-39020160

RESUMO

BACKGROUND: Bisphenol-A (BPA) and parabens are common endocrine-disrupting compounds (EDCs) that are used extensively in consumer products worldwide and are widely found in the environment. OBJECTIVE: The purpose of this study was to comprehensively explore the correlations between urinary BPA/parabens levels and liver injury/function markers. METHODS: In this cross-sectional study, we used National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2016. The exposure variables were urinary BPA and four urinary parabens [methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB), and butylparaben (BPB)], while the outcome variables were indicators of liver function/injury [alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ ALT, albumin (ALB), total protein (TP), total bilirubin (TBIL), alkaline phosphatase (ALP), and the fibrosis-4 index (FIB-4)]. Multiple linear regression and weighted quantile sum (WQS) regression analyses were applied to explore the relationships between the individual/combined exposure variables and the liver injury/function indicators, respectively. Furthermore, stratified analysis was employed to detect the associations influenced by age and sex. RESULTS: A total of 2,179 adults were eligible for the present analysis. Multivariate linear regression analysis revealed positive associations of EPB with AST, ALT, TP, and FIB-4 scores and negative associations of BPA with TP and ALB. The effects of urinary parabens on adverse outcomes in the liver (AST and ALT) were significant in the female and middle-aged subgroups. In addition, the WQS analysis revealed that the mixture of four compounds was negatively associated with ALB. BPA had the greatest effect on the serum ALB concentration (weight = 0.688). IMPACT: Our present study provided novel evidence of significant associations between BPA or certain parabens and numerous markers of liver injury/function indicators. We found that higher urinary BPA concentrations were associated with worse liver function. Exposure to high EPB/PPB ratios was significantly associated with biomarkers of liver injury.

18.
Environ Sci Pollut Res Int ; 31(33): 45834-45846, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38972946

RESUMO

Propylparaben (PrP) and dichloropropylparaben (diClPrP) are found in soil worldwide, mainly due to the incorporation of urban sludge in crop soils and the use of non-raw wastewater for irrigation. Studies on the adverse effects of PrP on plants are incipient and not found for diClPrP. PrP and diClPrP were evaluated at concentrations 4, 40, and 400 µg/L for their phytotoxic potential to seeds of Allium cepa (onion), Cucumis sativus (cucumber), Lycopersicum sculentum (tomato), and Lactuca sativa (lettuce), and cytotoxic, genotoxic potential, and for generating oxygen-reactive substances in root meristems of A. cepa bulbs. PrP and diClPrP caused a significant reduction in seed root elongation in all four species. In A. cepa bulb roots, PrP and diClPrP resulted in a high prophase index; in addition, PrP at 400 µg/L and diClPrP at the three concentrations significantly decreased cell proliferation and caused alterations in a significant number of cells. Furthermore, diClPrP concentrations induced the development of hooked roots in onion bulbs. The two chemical compounds caused significant changes in the modulation of catalase, ascorbate peroxidase, and guaiacol peroxidase, disarming the root meristems against hydroxyl radicals and superoxides. Therefore, PrP and diClPrP were phytotoxic and cytogenotoxic to the species tested, proving dangerous to plants.


Assuntos
Cebolas , Parabenos , Parabenos/toxicidade , Cebolas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Lactuca/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Cucumis sativus/efeitos dos fármacos
19.
Ecotoxicol Environ Saf ; 282: 116754, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047362

RESUMO

BACKGROUND: Toxicological and epidemiological studies have shown that environmental endocrine disruptors interfere with hormonal homeostasis. However, there is limited research on the effects of mixed exposure to nonpersistent endocrine disruptors on thyroid hormones and the factors (e.g., presence status of thyroid autoantibodies or nutritional status of organismal iodine) that may influence this association. METHODS: Data were collected from the National Health and Nutrition Examination Survey (NHANES) 2007-2008 and 2011-2012. Relationships between single pollutants and thyroid hormone and thyroid autoantibody levels were assessed using generalized linear (GLM) and restricted cubic spline (RCS) regression models. Weighted quantile sum regression (WQS), group-weighted quantile sum regression (GWQS), quantile-based g-computation (qgcomp), and adaptive elasticity network (AENET) were applied to assess the mixed exposure effect. Next, subgroup analyses were performed on the basis of the urinary iodine concentration or thyroid autoantibody status to assess the modifying role of urinary iodine and thyroid autoantibodies. RESULTS: A total of 2385 study participants were included in this study. Both the single-pollutant model and the multipollutant mixed model revealed that parabens and bis(2-ethylhexyl) phthalate (DEHP) metabolites were significantly and negatively associated with serum thyroxine (T4) levels. However, no associations were found between the target pollutants and thyroid autoantibodies (thyroglobulin antibodies (TgAb) and thyroid peroxidase antibodies (TPOAb)). In addition, this study revealed that urinary iodine or thyroid autoantibody status altered the associations of some of the target pollutants with thyroid hormones. WQS and qgcomp analyses, revealed that the associations of mixed pollutants with hormones differed depending on the urinary iodine or antibody status, especially T4 and thyroid-stimulating hormone (TSH). CONCLUSION: Significant associations were found between phenols, parabens, and phthalates and serum thyroid hormone levels, with parabens and DEHP metabolites playing major roles. Urinary iodine and thyroid autoantibody status act as modifiers between environmental endocrine-disrupting pollutants and thyroid hormones.


Assuntos
Autoanticorpos , Disruptores Endócrinos , Exposição Ambiental , Poluentes Ambientais , Iodo , Inquéritos Nutricionais , Parabenos , Fenóis , Ácidos Ftálicos , Hormônios Tireóideos , Humanos , Iodo/urina , Ácidos Ftálicos/urina , Masculino , Adulto , Feminino , Hormônios Tireóideos/sangue , Autoanticorpos/sangue , Fenóis/urina , Disruptores Endócrinos/sangue , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/sangue , Pessoa de Meia-Idade , Parabenos/toxicidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Estados Unidos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/imunologia , Adulto Jovem
20.
Environ Sci Technol ; 58(31): 13687-13696, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39067068

RESUMO

Bisphenols, parabens, and triclosan (TCS) are common endocrine disrupters used in various consumer products. These chemicals have been shown to cross the placental barrier and affect intrauterine development of fetuses. In this study, we quantified serum levels of six bisphenols, five parabens, and TCS in 483 pregnant women from southern China. Quantile-based g-computation showed that combined exposure to bisphenols, parabens, and TCS was significantly (p < 0.05) and negatively associated with birth weight (ß = -39.9, 95% CI: -73.8, -6.1), birth length (ß = -0.19, 95% CI: -0.34, -0.04), head circumference (ß = -0.13, 95% CI: -0.24, -0.02), and thoracic circumference (ß = -0.16, 95% CI: -0.29, -0.04). An inverse correlation was also identified between mixture exposure and gestational age (ß = -0.12, 95% CI: -0.24, -0.01). Bisphenol A (BPA), bisphenol Z (BPZ), bisphenol AP (BPAP), propylparaben (PrP), and TCS served as the dominant contributors to the overall effect. In subgroup analyses, male newborns were more susceptible to mixture exposure than females, whereas the exposure-outcome link was prominent among pregnant women in the first and second trimesters. More evidence is warranted to elucidate the impacts of exposure to mixtures on birth outcomes, as well as the underlying mechanisms.


Assuntos
Peso ao Nascer , Idade Gestacional , Parabenos , Fenóis , Triclosan , Humanos , Feminino , Gravidez , Peso ao Nascer/efeitos dos fármacos , Adulto , Masculino , Recém-Nascido , Exposição Materna , Disruptores Endócrinos , Compostos Benzidrílicos , China , Trimestres da Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA