Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123518

RESUMO

Ultrasonic (USC) treatments have been applied to starches, flours and grains to modify their physicochemical properties and improve their industrial applicability. The extent of the modification caused by USC treatment depends on the treatment conditions and the natural characteristics of the treated matter. Cavitation leads to structural damage and fragmentation and partial depolymerization of starch components. The amorphous regions are more susceptible to being disrupted by ultrasonication, while the crystalline regions require extended USC exposure to be affected. The increased surface area in USC-treated samples has a higher interaction with water, resulting in modification of the swelling power, solubility, apparent viscosity, pasting properties and gel rheological and textural properties. Starch digestibility has been reported to be modified by ultrasonication to different extents depending on the power applied. The most important treatment variables leading to more pronounced modifications in USC treatments are the botanical origin of the treated matter, USC power, time, concentration and temperature. The interaction between these factors also has a significant impact on the damage caused by the treatment. The molecular rearrangement and destruction of starch structures occur simultaneously during the USC treatment and the final properties of the modified matrix will depend on the array of treatment parameters. This review summarizes the known effects of ultrasonic treatments in modifying starches, flours and grains.

2.
Foods ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123611

RESUMO

This study combined rice starch (RS) with cactus polysaccharide (CP) at different composites (0.6%, 1.2%, 1.8%, 2.4%, and 3.0%, w/w), and analyzed the variations in the complex gelatinization properties, rheological properties, thermal properties, structural properties, digestibility, and freeze-thaw stability. As a result, the pasting parameters (p < 0.05) and storage modulus (G') together with the loss modulus (G″) decreased as the CP concentration increased; meanwhile, the RS and the CP-RS gels were pseudoplastic fluids. As revealed by differential scanning calorimetry (DSC), incorporating CP into the starch elevated the starch gelatinization temperature while decreasing gelatinization enthalpy, revealing that CP effectively retarded long-term retrogradation in RS. The gel microstructure and crystallization type altered after adding CP. Typically, CP inclusion could enhance the proportion of resistant starch and slowly digestible starch (SDS), thereby slowing RS hydrolysis. Concurrently, adding CP promoted the RS freeze-thaw stability. These findings could potentially aid in the innovation of CP-based food products.

3.
Foods ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39123640

RESUMO

Mild alkali treatment can potentially be developed as a greener alternative to the traditional alkali treatment of starch, but the effect of mild alkali on starch is still understudied. Normal and waxy rice starches were subjected to mild alkali combined with hydrothermal treatment to investigate their changes in physicochemical properties. After mild alkali treatment, the protein content of normal and waxy rice starches decreased from 0.76% to 0.23% and from 0.89% to 0.23%, respectively. Mild alkali treatment decreased gelatinization temperature but increased the swelling power and solubility of both starches. Mild alkali treatment also increased the gelatinization enthalpy of waxy rice starch from 20.01 J/g to 25.04 J/g. Mild alkali treatment at room temperature increased the pasting viscosities of both normal and waxy rice starches, whereas at high temperature, it decreased pasting viscosities during hydrothermal treatment. Alkali treatment significantly changed the properties of normal and waxy rice starch by the ionization of hydroxyl groups and the removal of starch granule-associated proteins. Hydrothermal conditions promoted the effect of alkali. The combination of hydrothermal and alkali treatment led to greater changes in starch properties.

4.
Food Chem ; 460(Pt 3): 140826, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39167868

RESUMO

The aim of this study was to evaluate the impact of non-thermal methods, using high hydrostatic pressure (HHP) and pulsed electric field (PEF), on the dual modification of quinoa starch and to analyze the microstructural, morphological, thermal, pasting, and texture properties. Starch was treated with HHP at 400 MPa for 10 min, while PEF was applied using voltages of 10 and 30 kV cm-1 for a total time of 90s. The modification techniques were effective in breaking down amylose molecules and amylopectin branches, where for the dual treatment, higher values of DP6-12 were found. The average diameter and gelatinization temperatures were elevated after HHP, thus forming clusters that require more energy for paste formation. The use of 30 kV cm-1 and 400 MPa (HP30) in starch facilitates the creation of new food products with better texture, stability and nutritional value, making them suitable for use in food emulsions and the cosmetics industry.

5.
Heliyon ; 10(15): e35140, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157330

RESUMO

The functional properties of Andean grain starches of two species, amaranth (Amaranthus caudatus) and canihua (Chenopodium pallidicaule), three cultivars each, were studied. The study focused on chemical composition, pasting properties, thermal properties, water solubility index (WSI), swelling power (SP), and granule morphology. All amaranth starches were waxy starches, with amylose content less than 5 %, which had some differences in chemical composition (p < 0.05). The pasting properties differed between the species, canihua showed more resistance, than amaranth, to heat and shear stress (higher cool paste (CPV) and lower breakdown (BD), ranged between 1250 and 1600 cP and -30 - 10 cP respectively. The amaranth starches presented only similar CPV with 800-1000 cP, while canihua cultivars presented similar PT and BD, and both species presented similar PV, around 1000 cP. Thermal properties (To, Tp, Tc, ΔH, and ΔT) differed among cultivars and species. These differences could be related to the homogeneity molecular structure and content of amylose in canihua cultivars and possibly to genotype factor. Polygonal shapes were the predominant shape of starch granules, ranged 1.0-1.4 µm and 0.8-0.9 µm, for amaranth and canihua starches respectively. Amaranth starches swelled quickly to disintegrate partially at the end, contrary to canihua starches. The thermal and pasting properties were correlated between them. SB, CPV, HPV, CS, were correlated to the content of amylose in canihua starches. One amaranth cultivar was significantly different from the others. Thus, according the functional properties differenced both species and some cultivars in each species. Additionally, the amaranth starch has the potential to be used in the food industry where heat and stress are applied such as extrusion, while canihua starches can be used in desserts or in cosmetic uses, based on their functional properties.

6.
Int J Biol Macromol ; 278(Pt 4): 135032, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182880

RESUMO

Native lotus (Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G' (1665-4004 Pa) was greater than G″ (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.

7.
Food Technol Biotechnol ; 62(2): 264-274, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39045301

RESUMO

Research background: Controlled sprouting promotes physiological and biochemical changes in whole grains, improves their nutritional value and offers technological advantages for breadmaking as an alternative to traditional whole grains. The aim of this study is to find sprouting conditions for the grains of Klein Valor wheat variety (Triticum aestivum L.) that would increase the nutritional value without significantly affecting the gluten proteins, which are essential in wholegrain baked goods. Experimental approach: The chemical and nutritional composition, enzymatic activity and pasting properties of the suspensions of unsprouted and sprouted whole-wheat flour were evaluated. Results and conclusions: This bioprocess allowed us to obtain sprouted whole-wheat flour with different degrees of modification in its chemical composition. Sprouting at 25 °C resulted in an observable increase in enzymatic activity and metabolic processes, particularly α-amylases, which significantly affect the starch matrix and the associated pasting properties. Additionally, there was a smaller but still notable effect on the structure of the cell walls and the protein matrix due to the activation of endoxylanases and proteases. In contrast, sprouting at 15 and 20 °C for 24 h allowed for better process control as it resulted in nutritional improvements such as a higher content of free amino acid groups, free phenolic compounds and antioxidant capacity, as well as a lower content of phytates. In addition, it provided techno-functional advantages due to the moderate activation of α-amylase and xylanase. A moderate decrease in peak viscosity of sprouted whole-wheat flour suspensions was observed compared to the control flour, while protein degradation was not significantly prolonged. Novelty and scientific contribution: Sprouted whole-wheat flour obtained under milder sprouting conditions with moderate enzymatic activity could be a promising and interesting ingredient for wholegrain baked goods with improved nutritional values and techno-functional properties. This approach could avoid the use of conventional flour improvers and thus have a positive impact on consumer acceptance and enable the labelling of the product with a clean label.

8.
J Sci Food Agric ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953558

RESUMO

BACKGROUND: Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS: Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION: The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.

9.
Foods ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998551

RESUMO

The current research examined the impact of different concentrations of oat beta-glucan (OG) on the in vitro digestibility of fava bean starch (FS). Our pasting analysis demonstrated that OG effectively decreased the viscosity and regrowth of FS, suppressing its in situ regrowth while enhancing the in vitro pasting temperature. Moreover, OG markedly diminished amylose leaching and minimized the particle size of the pasted starch. Rheological and textural evaluations demonstrated that OG markedly diminished the viscoelasticity of the starch and softened the gel strength of the composite system. Structural analysis revealed that hydrogen bonding is the primary interaction in the FS-OG system, indicating that OG interacts with amylose through hydrogen bonding, thereby delaying starch pasting and enhancing the gelatinization characteristics of FS gels. Notably, the incorporation of OG resulted in a reduction in the levels of rapidly digestible starch (RDS) and slowly digestible starch (SDS) in FS, accompanied by a notable increase in resistant starch (RS) content, from 21.30% to 31.82%. This study offers crucial insights for the application of OG in starch-based functional foods.

10.
Foods ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891013

RESUMO

Canary seed flour is a new food ingredient that the United States Food and Drug Administration (FDA) and Health Canada recently granted Generally Regarded as Safe (GRAS) status. Stability in nutritional composition and functional properties is an essential characteristic of food ingredients for consistency in nutritional quality and performance in processing. This work assessed the effect of genotypic and environmental variation on the nutritional (protein, starch, amylose, oil, dietary fiber, minerals and fat-soluble vitamins) and pasting (as measured in viscosity (peak, trough, breakdown, final, and setback), peak time, and pasting temperatures) properties of Canary seed. The samples included four Canary seed varieties grown in randomized complete block design experiments at one location for two growing seasons. In general, the nutritional composition of Canary seed flour was not affected by genotype, growing year, and their interaction except for starch content, which was significantly affected by the growing year (p < 0.0001), and iron content, which was affected by genotypic variation (p < 0.0001). The pasting properties of Canary seed flour were significantly (p < 0.001) affected by both genotypic and growing year variation but not their interaction. Our results suggest that the food industry should measure starch and iron content prior to processing to ensure consistency in nutritional labeling. Also, for those applications where starch pasting properties are essential, the manufacturer should consider measuring the RVA pasting viscosities for every batch of raw material. The results have provided the baseline knowledge of which nutritional or functional properties of Canary seed flour can be improved through breeding and agronomy programs to ensure the reliability of Canary seed as an ingredient.

11.
Int J Biol Macromol ; 274(Pt 1): 133238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897493

RESUMO

Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g-1 to 21.95 J·g-1, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.


Assuntos
Álcalis , Amilopectina , Amilose , Amido , Zea mays , Zea mays/química , Amido/química , Álcalis/química , Viscosidade , Amilopectina/química , Amilose/química , Temperatura , Concentração de Íons de Hidrogênio
12.
Int J Biol Macromol ; 270(Pt 1): 132421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759854

RESUMO

This study examines the effects of flaxseed gum (FG) on the aggregate structure, pasting and rheological properties of waxy rice starch (WRS). Results display an increase in the ordered molecular structure (R1047/1024), relative crystallinity (RC), compactness (α), and microphase heterogeneity (ε, density degree of nanoaggregates, from 3.52 to 4.23) for WRS-FG complexes. These suggested FG facilitated the development of more organized molecular and crystalline structures of WRS, accompanied by the formation of ordered nanoaggregates with higher density (i.e., nano-aggregation structure). Also, FG addition resulted in the formation of enhanced gel network structure characterized by thicker layer walls and more uniform pores. These structural transformations contributed to a rise in gelatinization temperature (To, from 56.90 °C to 62.10 °C) and enthalpy (ΔH), as well as alterations in paste viscosities (PV, from 1285.00 mPa·s to 1734.00 mPa·s), and the rigidity of network structure (e.g., decreased loss tangent). These results indicate that FG could effectively regulate the techno-functional properties of WRS by rationally controlling the starch intrinsic structures of starch. And this study may improve the pasting and gelling properties of starch, thus driving the development of high-quality starchy foods and prolonging their shelf life, especially for glutinous rice flour products.


Assuntos
Linho , Oryza , Reologia , Amido , Oryza/química , Amido/química , Linho/química , Gomas Vegetais/química , Temperatura , Viscosidade
13.
Heliyon ; 10(10): e31148, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38770325

RESUMO

Yam (Dioscorea spp.) is a versatile tuber crop that holds nutritional, cultural, and economic values. Yam is a major source of carbohydrates for tropical Countries and provides various nutrients and health benefits. This study aims to characterize the chemical, structural, and thermal properties of yam flour using various analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal analysis. Additionally, the pasting and rheological properties of yam flour were evaluated, as they are crucial for product development and enhancing the value of this unconventional vegetable. D. cayenensis complex had the highest total starch (64.63 ± 1.61 %) and soluble sugar (4.95 ± 0.46 %) content, which was significantly higher than other yam species. The amylose content of yam flours showed significant (p < 0.05) differences among the yam species. D. cayenensis flour exhibited significantly the highest peak (2923.66 cP) and steak back viscosity (2097.66 cP) among the yam species associated with their greater amylose content. There were notable variations in pasting and gelatinization parameters among the species. The peak temperatures of D. bulbifera and D. cayenensis complex were significantly (p < 0.05) higher than D. cayenensis and D. rotundata flours. The rheological measurements of yam flours demonstrated solid-like behavior with varying intensities. Furthermore, the morphology of tuber yam flour particles was oval to ellipsoidal shaped, with some appearing ovoid, and the smaller granules appearing spherical. The X-ray diffraction showed that all yam flours exhibit a B-type pattern. This study provide a better understanding of this unconventional vegetable's potential applications in the food industry and contribute to its value addition.

14.
J Food Sci ; 89(6): 3208-3229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638063

RESUMO

In this research, parboiling was carried out at different times (5 and 15 min) on germinated paddy rice (GPR) from various basmati and non-basmati varieties. The results showed that as the parboiling time increased from 5 to 15 min, Δ $\Delta $ E, ash content, total dietary fiber, mineral content, cooking time, and textural properties increased while L*, lipid content, total starch, gruel solid loss, water absorption, oil absorption, foaming capacity, sugar profile, and total phenolic and flavonoid content decreased as compared to GPR. All pasting properties of GPR increased except breakdown as the parboiling time increased from 5 to 15 min. Parboiling altered the properties of GPR due to starch gelatinization. Total essential amino acid and gamma-aminobutyric acid decreased as the parboiling time (5 to 15 min) increased. The germinated parboiled brown rice could create a highly nutritious alternative to regular brown rice as it offers improved texture and cooking qualities.


Assuntos
Aminoácidos , Culinária , Germinação , Oryza , Fenóis , Oryza/química , Oryza/crescimento & desenvolvimento , Culinária/métodos , Aminoácidos/análise , Fenóis/análise , Açúcares/análise , Fibras na Dieta/análise , Amido/análise , Fatores de Tempo
15.
Int J Biol Macromol ; 268(Pt 1): 131576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636764

RESUMO

This work aimed to characterize and compare the physicochemical properties of four pulse starches: bean, chickpea, lentil, and pea. Chemical proximate analysis, elemental composition, morphological grain characterization, crystalline structure, thermal analysis, FTIR analysis, and pasting properties were conducted. The proximate analysis shows that these starches have low fat, mineral, and protein content but high amylose values ranging from 29 to 36 % determined by colorimetry. Despite the high amylose content, the starches did not exhibit the typical behavior of an amylose-rich starch, with high peak viscosity and low breakdown and setback. It was found that this behavior was likely due to the large granule size of the ellipsoidal, spherical, and kidney-shaped granules and the high content of some minerals such as Na, Mg, K, Fe, Mn, P, and Si. The study also found that all pulse starches simultaneously contain monoclinic and hexagonal crystals, making them C-type starches. The findings were verified through the Rietveld analyses of X-ray diffraction patterns and differential scanning calorimetry, in which bimodal endothermic peaks evidenced both types of crystals being gelatinized.


Assuntos
Amilose , Reologia , Amido , Amido/química , Amilose/química , Amilose/análise , Fenômenos Químicos , Viscosidade , Difração de Raios X , Lens (Planta)/química , Produtos Agrícolas/química , Cicer/química , Varredura Diferencial de Calorimetria
16.
Foods ; 13(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611296

RESUMO

The technological and nutritional traits of food-grade sorghum hybrids, hulled/naked oat varieties and maize genotypes of different colors were studied for novel and healthier gluten-free foods. Oat genotypes showed the highest protein content, followed by maize and sorghum. The total starch and the total dietary fiber content were quite similar among the three species. Great variation was found in the amylose content, and the highest was in sorghum (27.12%), followed by oat 16.71% and maize 10.59%. Regarding the pasting profile, the rank of Peak Viscosity was sorghum (742.8 Brabender Unit, BU), followed by maize (729.3 BU) and oat (685.9 BU). Oat and sorghum genotypes had similar average breakdown (407.7 and 419.9 BU, respectively) and setback (690.7 and 682.1 BU, respectively), whereas maize showed lower values for both parameters (384.1 BU and 616.2 BU, respectively). The total antioxidant capacity, only in maize, significantly correlated with total flavonoid, phenolic and proanthocyanidin contents, indicating that all the measured compounds contributed to antioxidant capacity. The study indicated the importance of sounding out the nutritional and technological characteristics of gluten-free cereals in order to select suitable cultivars to be processed in different gluten-free foods with better and healthier quality.

17.
Foods ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672871

RESUMO

Studying diversity in local barley varieties can help advance novel uses for the grain. Therefore, starch was isolated from nine Ethiopian food barley varieties to determine starch structural, pasting, thermal, and digestibility characteristics, as well as their inter-relationships. The amylose content in the varieties significantly varied from 24.5 to 30.3%, with a coefficient of variation of 6.1%. The chain length distributions also varied significantly, and fa, fb1, fb2, and fb3 ranged from 26.3 to 29.0, 48.0 to 49.7, 15.0 to 15.9, and 7.5 to 9.5%, respectively. Significant variations were also exhibited in absorbance peak ratios, as well as thermal, pasting, and in vitro digestibility properties, with the latter two parameters showing the greatest diversity. Higher contents of amylose and long amylopectin fractions contributed to higher gelatinization temperatures and viscosities and lower digestibility. Structural characteristics showed strong relationships with viscosity, thermal, and in vitro digestibility properties. Cross 41/98 and Dimtu varieties are more suitable in functional food formulations and for bakery products. These results might inspire further studies to suggest target-based starch modifications and new product development.

18.
Int J Biol Macromol ; 267(Pt 2): 131315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569985

RESUMO

Understanding the hierarchical structure and physicochemical properties of starch isolated from fermented dough with different times (0-120 min) is valuable for improving the quality of fermented dough-based products. The results indicate that fermentation disrupted the starch granule surface and decreased the average particle size from 19.72 µm to 18.45 µm. Short-term fermentation (< 60 min) disrupted the crystalline, lamellar, short-range ordered molecular and helical structures of starch, while long-term fermentation (60-120 min) elevated the ordered degree of these structures. For example, relative crystallinity and double helix contents increased from 23.7 % to 26.8 % and 34.4 % to 37.2 %, respectively. During short-term fermentation, the structural amorphization facilitated interactions between starch molecular chains and water molecules, which increased the peak viscosity from 275.4 to 320.6 mPa·s and the swelling power from 7.99 to 8.52 g/g. In contrast, starches extracted from long-term fermented dough displayed the opposite results. Interestingly, the hardness and springiness of starch gels gradually decreased as fermentation time increased. These findings extend our understanding of the starch structure-property relationship during varied fermentation stages, potentially benefiting the production of better-fermented foods.


Assuntos
Fermentação , Amido , Amido/química , Viscosidade , Fenômenos Químicos , Farinha/análise , Tamanho da Partícula , Pão/análise
19.
Front Nutr ; 11: 1330662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501069

RESUMO

Introduction: The present research focuses on the chapatti making quality of high-yielding white maize hybrids compared to available low-yielding local yellow and white landraces in India. Materials and methods: In this study, the top nine superior hybrids were selected for testing the physical properties of the maize kernels, proximate composition of flours and chapattis, physical parameters of chapatti, textural properties, sensory evaluation of chapattis and pasting properties of maize flour. Results and discussion: The results revealed the superiority of white maize hybrids (WMH), viz., WHM 1, WHM 2, and WHM 8 over the local yellow and white landraces for most of the parameters studied. In sensory analysis, though, the yellow landrace was considered superior by the panellists in terms of colour but the white maize hybrids outperformed in overall sensory analysis and were more acceptable than the yellow and white maize landraces. These high yielding white maize hybrids with good consumer acceptance may cater for the needs of rural and tribal populations in India who prefer white maize as a staple food.

20.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542847

RESUMO

This study evaluated the effects of four highland barley proteins (HBPs), namely, albumin, globulin, gliadin and glutenin, on the short-term retrogradation of highland barley starch (HBS). The findings reveal that HBPs could reduce the viscosity, storage modulus and hardness of HBS, with albumin and globulin showing more prominent effects. Furthermore, with the addition of HBPs, the loss tangent (tan δ) of HBS loss increased from 0.07 to 0.10, and the enthalpy of gelatinization decreased from 8.33 to 7.23. The degree of retrogradation (DR%) of HBS was 5.57%, and the DR% decreased by 26.65%, 38.78%, 11.67% and 20.29% with the addition of albumin, globulin, gliadin and glutenin, respectively. Moreover, the relative crystallinity (RC) and the double helix structures were inhibited with the HBPs' incorporation. Meanwhile, the HBPs also could inhibit water migration and improve the structure of HBS gels. In summary, HBPs could inhibit the retrogradation behavior of HBS, which provides new theoretical insights for the production studies of highland barley foods.


Assuntos
Globulinas , Hordeum , Amido/química , Gliadina/química , Albuminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA