Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Foods ; 13(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39410195

RESUMO

Incorporating plant protein isolates into milk can enhance probiotic culture growth by providing essential nutrients and altering the physicochemical properties of fermented milk. This study investigated the effects of adding 1.5% or 3.0% soy, pea, and whey protein isolates on the growth of Lacticaseibacillus casei and Lactobacillus johnsonii monocultures, as well as the physicochemical (acidity, syneresis, color) and organoleptic properties of fermented milk during 21 days of refrigerated storage. The results showed that 1.5% SPI and WPI did not significantly alter milk acidity compared to controls. Still, pH increased with 1.5% and 3.0% PPI. Storage time significantly affected pH in L. casei fermented milk. The initial addition of WPI at 1.5% and 3.0% reduced syneresis in L. casei fermented milk compared to other samples. Color components were significantly influenced by isolates. Initial L. casei cell counts were lower with SPI (LCS1.5 and LCS3) and 1.5% PPI (LCP1.5) compared to controls. Increasing isolate concentration from 1.5% to 3% enhanced L. johnsonii growth in WPI-milk but reduced L. casei in LCW3 compared to LCW1.5. Only increased pea protein concentration significantly increased L. casei growth. Probiotic populations generally were reduced during extended storage. Moreover, isolates impacted milk organoleptic evaluation. This research demonstrates the potential of protein isolates in creating health-promoting and diverse fermented products and offers insights into their interaction with probiotic cultures to advance functional food technologies.

2.
Int J Biol Macromol ; 281(Pt 2): 135960, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357732

RESUMO

High moisture extrusion allows the production of plant protein-based products, including meat analogues. Building upon our previous findings showing that zein mixed with rice starch provides the necessary textural properties to formulations, different pea protein-based formulations with varying amounts of zein and rice starch or wheat gluten (as control) were produced using high moisture extrusion and the rheological, textural, and microstructural characteristics were evaluated and associated with the secondary structure of proteins. Samples containing wheat gluten presented desirable rheological and mechanical properties in terms of texturization, which was evidenced by the generation of a layered and three-dimensional viscoelastic network. The addition of rice starch to zein significantly increased the viscoelasticity of the samples due to enhanced development of non-covalent interactions that led to higher and more stable ß-sheets content and to the formation of a fibrous and layered microstructure and a 3D network nearly like those obtained with gluten. The sole replacement of pea protein by zein was not enough to develop these desired characteristics, demonstrating the importance of the non-covalent interactions between rice starch and zein for the generation of these properties. Overall, zein and rice starch improved texturization of pea protein-based gluten-free analogues made by high moisture extrusion.

3.
Nutrients ; 16(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39408332

RESUMO

BACKGROUND: Plant-based formulas have become increasingly popular due to their health benefits, environmental concerns, cultural beliefs, improved palatability, and decreased cost. A retrospective chart review of medically stable children transitioning from a hypoallergenic formula to a yellow pea protein plant-based formula (PPPBF) was included. This study aimed to assess gastrointestinal tolerance, weight changes, and adherence to receiving a unique PPPBF. METHODS: Healthcare providers (HCPs) from pediatric clinics across the United States who requested increased PPPBF samples between the dates of 1 November 2021and 31 January 2022 and again from 1 February 2022 to 15 April 2022 inputted survey data. The HCPs selected participants based on the inclusion criteria. RESULTS: Seventy-three completed patient surveys were included of children (ages 1-18 years old, 41% females, 59% males). After the transition to PPPBF, 38.4% experienced improvement in GI tolerance, 56.2% experienced no change, and 5.5% reported worsening GI tolerance. There was a 95% adherence rate, and 98.9% reported no adverse reactions or allergic manifestations after formula transition. CONCLUSIONS: Transitioning from a hypoallergenic formula to a PPPBF showed a trend toward stable GI tolerance, weight gain or stability, and adherence. A PPPBF offers a first-choice option for children who are on hypoallergenic formulas due to intolerance.


Assuntos
Hipersensibilidade Alimentar , Pisum sativum , Humanos , Feminino , Masculino , Estudos Retrospectivos , Lactente , Pré-Escolar , Criança , Adolescente , Fórmulas Infantis , Cooperação do Paciente , Aumento de Peso
4.
Food Chem ; 464(Pt 1): 141589, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39406142

RESUMO

The effects of polyphenols from Tasmanian pepper (Tasmannia Lanceolata) leaf and berry on the functional properties of pea protein were investigated in flaxseed oil-in-water emulsions. Phenolic acids and flavonols in Tasmanian pepper leaf with smaller molecular weights led to stronger non-covalent interactions with pea protein, while anthocyanins from Tasmanian pepper berry induced protein aggregation under acidic condition and co-existed with proteins in neutral and alkaline conditions. The total phenolic content was significantly increased with incorporation of polyphenols from Tasmanian pepper leaf (334.94-445.92 µg/mL) and berry (72.89-153.03 µg/mL) to pea protein (4.19-15.59 µg/mL). The oxidative stability of emulsions at pH 3 and 7 was enhanced, reducing TBARS value from 1.54 to 2.68 mg MDA/kg in pea protein to 0.56-0.85 mg MDA/kg after 2 weeks storage. These findings illustrated the distinct interactions between pea protein and different polyphenols from Tasmanian pepper leaf and berry to enhance the antioxidant capacity of pea protein.

5.
J Sci Food Agric ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373186

RESUMO

BACKGROUND: The design of plant-based microgels provides a platform for food ingredients to enhance palatability and functionality. This work aimed to explore the modifying effect of salt addition (KCl) on the structure of pea protein microgel particles (PPI MPs), on the interfacial adsorption and characteristics of formed emulsions as fat analogues. RESULTS: Salt addition (0-200 mmol L-1) promoted a structural transformation from α-helix to ß-sheet, increased the surface hydrophobicity (from 1160.8 to 2280.7), and increased the contact angle (from 56.73° to 96.47°) of PPI MPs. The electrostatic shielding effect led to the tighter packing of MPs with irregular structures and lowered the adsorption energy barrier. Notably, salt-treated PPI MPs could adjust their adsorption state at the interface. The discernible adsorption of PPI MPs with 200 mmol L-1 salt addition that possessed enhanced anti-deformation ability dominated the interfacial stabilization, whereas a relatively rougher stretched continuous interfacial film formed after spreading and deformation of 0 mmol L-1 MPs. A tribological test suggested that emulsion stabilized by MPs at 0 (0.0053) and 80 mmol L-1 (0.0068) had similar friction coefficients to commercial mayonnaise (0.0058), whereas a higher salt concentration (200 mmol L-1) lowered its oral sensation due to the adsorption layer and enhanced the resistance to droplet coalescence during oral processing. CONCLUSION: Salt could be a modifier to tune the structure of microgels, and further promote the formation and attributes of emulsions. This study would improve application attributes of PPI MPs in the design of realistic fat analogues. © 2024 Society of Chemical Industry.

6.
Food Chem ; 463(Pt 1): 141062, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39236389

RESUMO

Physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein isolate (WPI) and pea protein isolate (PPI) at varying mass ratios (100/0, 75/25, 50/50, 25/75, 0/100) were investigated. Data indicated that the mass ratios affected the physical, chemical and storage stability of the emulsion by influencing the particle size, zeta-potential, surface hydrophobicity, free sulfhydryl content, and secondary structure of the blends. Particularly, emulsion with a mixing ratio of 75/25 exhibited superior physical stability against salt concentrations (200 and 500 mM), better chemical stability against UV light and heat, and maintained stability over a 30-day storage period. Emulsions stabilized by blends of different ratios exhibited similar digestion behavior, with no significant differences observed in lycopene's transformation stability and bio-accessibility. Data indicated that substitution of whey protein by pea protein is effective in term of emulsifier application and replacement ratio is an important factor need to be considered.

7.
Food Chem ; 463(Pt 1): 141042, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241412

RESUMO

Textured vegetable proteins (TVP) are an alternative to meet the increasing demand for non-animal food. This study aimed to develop a TVP from mixtures with 45 % pea protein isolate (PPI) enriched with amaranth (AF) and oat (OF) flours using high-moisture extrusion technology (HME) varying the moisture (50-70 %) and the temperature in the second heating zone of the extruder (110-140 °C). After extrusion, all samples demonstrated higher values of water absorption capacity (WAC) than non-extruded mixtures. Mixture of AF:OF:PPI (40:15:45 %) extruded at 60 % moisture and 135 °C showed promising functional properties with WAC and WSI values of 3.2 ± 0.2 g H2O/g and 24.89 ± 2.31 %, respectively, and oil absorption capacity (OAC) of 1.3 g oil/g. The extrusion process altered the thermal and structural properties of proteins promoting a desirable fibrous structure. This confirms the feasibility of using HME to develop TVP based on PPI, AF, and OF.

8.
J Food Sci ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349982

RESUMO

Comprehensive comprehension of the interaction between proteins and polyphenols is crucial for advancing their utilization in food processing. This study investigated no-covalent interaction between pea protein isolate (PPI) and quercetin (Que) through spectroscopic analysis and molecular simulation. Fourier transform infrared spectroscopy and circular dichroism spectrum showed that the interaction between PPI and Que changed the secondary structure of the protein due to a decrease in α-helix content and an increase in the random coil. Thermodynamic parameters indicated that the Quebound PPI via hydrogen bonds and hydrophobic interactions (ΔH > 0, ΔS > 0, and ΔG < 0), which was also confirmed by molecular docking. Particle size and ζ-potential showed that PPI and Que demonstrated effective interaction and binding capabilities, enhancing the stability. In addition, the antioxidant and bioaccessibility of complexes have also been enhanced. This study shed a light on the application of protein-polyphenol complexes for developing functional foods. PRACTICAL APPLICATION: Interaction between pea protein isolate and quercetin can change the protein conformation to maintain the stability of quercetin and is helpful to expand the market value and application value of plant protein. The research has important implications for using leguminous protein as embedded support to improve the stability of polyphenols compounds.

9.
Food Sci Anim Resour ; 44(5): 1108-1125, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246534

RESUMO

Cultured meat is under investigation as an environmentally sustainable substitute for conventional animal-derived meat. Employing a scaffolding technique is one approach to developing cultured meat products. The objective of this research was to compare soy and pea protein in the production of hydrogel scaffolds intended for cultured meat. We examined the gelation process, physical characteristics, and the ability of scaffolds to facilitate cell adhesion using mesenchymal stem cells derived from porcine adipose tissue (ADSCs). The combination of soy and pea proteins with agarose and agar powders was found to generate solid hydrogels with a porous structure. Soy protein-based scaffolds exhibited a higher water absorption rate, whereas scaffolds containing agarose had a higher compressive strength. Based on Fourier transform infrared spectroscopy analysis, the number of hydrophobic interactions increased between proteins and polysaccharides in the scaffolds containing pea proteins. All scaffolds were nontoxic toward ADSCs, and soy protein-based scaffolds displayed higher cell adhesion and proliferation properties. Overall, the soy protein-agarose scaffold was found to be optimal for cultured meat production.

10.
J Sci Food Agric ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253887

RESUMO

BACKGROUND: Construction of meat analogs based on pea protein isolate (PPI) alone by high moisture extrusion (HME) is diffocult as a result of the lack of anisotropic structures. In the present study, 0%-15% of whey protein (WP) was introduced to PPI to make hybrid blends, which were used to construct HME extrudates. RESULTS: WP enhanced the hardness, adhesive, cohesiveness and gumminess of the extrudates and facilitated the formation of a distinct anisotropic structure of PPI. The fibrous degrees of the extrudates containing 10% and 15% WP were around 1.50. The addition of WP, which has more -SH groups, increased the disulfide bonds and hydrogen bonding in the extrudates, leading to a denser cross-linked structure. Particle size distribution and Fourier transform infrared analysis showed that WP induced more compact structured aggregates and more ß-sheet structures in the extrudates. Furthermore, the higher hydration capacity of WP may also help form a dilute melt and generate a more pronounced plug flow, assisting the formation of fiber structures of PPI. CONCLUSION: The present study demonstrates that WP is a potential modifier, which could be used to improve the structure of PPI-based meat analogs. © 2024 Society of Chemical Industry.

11.
Nutrients ; 16(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39275186

RESUMO

As older adults tend to reduce their intake of animal-source proteins, plant-source proteins may offer valuable resources for better protein intake. The aim of this study was to assess whether the pea proteins can be used to achieve blood amino acid levels that stimulate muscle protein synthesis. We measured variations in plasma amino acid concentrations in young and older adults given pea (NUTRALYS® S85 Plus) or whey proteins either alone or in a standardized meal. The effect of amino acid concentrations on protein synthesis in C2C12 myotubes was determined. In terms of results, plasma amino acid concentrations reflected the difference between the amino acid contents of whey and pea proteins. Blood leucine showed a greater increase of 91 to 130% with whey protein compared to pea protein, while the opposite was observed for arginine (A greater increase of 147 to 210% with pea compared to whey). Culture media prepared with plasmas from the human study induced age-dependent but not protein-type-dependent changes in myotube protein synthesis. In conclusion, pea and whey proteins have the same qualities in terms of their properties to maintain muscle protein synthesis. Pea proteins can be recommended for older people who do not consume enough animal-source proteins.


Assuntos
Aminoácidos , Fibras Musculares Esqueléticas , Proteínas de Ervilha , Proteínas do Soro do Leite , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Humanos , Masculino , Animais , Idoso , Aminoácidos/sangue , Camundongos , Feminino , Adulto , Adulto Jovem , Biossíntese de Proteínas/efeitos dos fármacos , Linhagem Celular , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Pisum sativum/química
12.
Food Res Int ; 195: 114988, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277259

RESUMO

This study investigated the effect of gellan gum (GG) and glucono-δ-lactone (GDL) on the acid-induced gel properties of pea protein isolate (PPI) pretreated with media milling. The inclusion of GG substantially enhanced the gel hardness of PPI gel from 18.69 g to 792.47 g though slightly reduced its water holding capacity (WHC). Rheological analysis showed that GG increased storage modulus (G') and decreased damping factor of gels in the small amplitude oscillatory shear region and transformed its strain thinning behavior into weak strain overshoot behavior in the large amplitude oscillatory shear region. SEM revealed that GG transformed the microstructure of gel from a uniform particle aggregate structure to a chain-like architecture composed of filaments with small protein particles attached. Turbidity and zeta potential analysis showed that GG promoted the transformation of PPI from a soluble polymer system to an insoluble coagulant during acidification. When GG content was relatively high (0.2 %-0.3 %), high GDL content increased the electrostatic interaction between PPI and GG molecules, causing their rapid aggregation into a dense irregular aggregate structure, further enhancing gel strength and WHC. Overall, GG and GDL can offer the opportunity to modulate the microstructure and gel properties of acid-induced PPI gels, presenting potential for diversifying food gel design strategies through PPI-GG hybrid systems.


Assuntos
Géis , Gluconatos , Lactonas , Proteínas de Ervilha , Polissacarídeos Bacterianos , Reologia , Polissacarídeos Bacterianos/química , Lactonas/química , Géis/química , Gluconatos/química , Proteínas de Ervilha/química , Concentração de Íons de Hidrogênio
13.
Int J Biol Macromol ; 278(Pt 2): 134818, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154679

RESUMO

This study explored the relationship between pea protein foaming properties and their structure and physicochemical properties under neutral and acidic pH. Results showed that pH modified the zeta potential, particle size and surface tension due to electrostatic changes. FT-MIR and fluorescence spectra revealed pH-induced conformational changes, exposing hydrophobic groups and increasing sulfhydryl content, promoting protein aggregation. At pH 3, the highest foaming capacity (1.273) and lowest foam expansion (6.967) were observed, associated with increased surface hydrophobicity and net charges, ideal for creating light foams with high liquid incorporation for acidic beverages or fruit-based mousses. Pea protein isolate generated stable foams with foam volume stability between 86.662 % and 94.255 %. Although neutral pH conditions showed the highest foam volume stability, their air bubbles increased in size and transitioned from spherical to polyhedral shape, suitable for visual-centric applications, like cappuccino foam and beer-head retention. Foams at pH 5 exhibited the smallest bubbles and maintained their spherical shape, enhancing drainage resistance, beneficial for whipped toppings. Strong correlations (Pearson correlation coefficient higher than 0.600) were noted between the structure, surface and foaming properties, providing crucial insights into optimizing pea protein functionality across various pH conditions, enabling the development of plant-based foamed products with tailored properties.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Proteínas de Ervilha , Concentração de Íons de Hidrogênio , Proteínas de Ervilha/química , Relação Estrutura-Atividade , Tensão Superficial , Tamanho da Partícula , Pisum sativum/química , Agregados Proteicos , Eletricidade Estática
14.
Food Chem ; 461: 140861, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39167949

RESUMO

This work evaluated the impact of incorporating 1% of commercial protein hydrolysates [rice protein hydrolysate (RPH), pea protein hydrolysate (PPH), and casein hydrolysate (CH)] on the functional, microstructure, and texture properties of set yogurt. Yogurt prepared with RPH exhibited the highest viability number of Streptococcus thermophilus. The addition of three hydrolysate types to yogurt revealed significant increases in the antioxidant and ACE-inhibitory activities, where the highest values were noted for the yogurt prepared with RPH. RPH exhibited no differences in texture properties (firmness, consistency, and cohesiveness) to control yogurt. These results were confirmed by scanning electron microscope examination. RPH and control yogurts showed compacted and dense structures accompanied by small pores, whereas CH and PPH yogurt structures were characterized by coarse networks with large voids. Furthermore, there was no significant impact of adding protein hydrolysates on the overall acceptability of yogurt as indicated by a sensory panel.


Assuntos
Hidrolisados de Proteína , Streptococcus thermophilus , Iogurte , Iogurte/análise , Hidrolisados de Proteína/química , Humanos , Streptococcus thermophilus/química , Streptococcus thermophilus/metabolismo , Alimentos Fortificados/análise , Antioxidantes/química , Oryza/química , Paladar , Inibidores da Enzima Conversora de Angiotensina/química , Caseínas/química
15.
Carbohydr Polym ; 343: 122481, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174102

RESUMO

The low solubility of pea protein isolate (PPI) greatly limits its functional properties and its wide application in food field. Thus, this study investigated the effects and mechanisms of cellulose nanocrystals (CNC) (0.1-0.4 %) and CaCl2 (0.4-1.6 mM) on the solubility of PPI. The results showed that the synergistic effect of CNC (0.3 %) and Ca2+ (1.2 mM) increased the solubility of PPI by 242.31 %. CNC and Ca2+ changed the molecular conformation of PPI, enhanced intermolecular forces, and thus induced changes in the molecular morphology of PPI. Meanwhile, the turbidity of PPI decreased, while surface hydrophobicity, the absolute zeta potential value, viscoelasticity, ß-sheet ratio, and thermal properties increased. CNC bound to PPI molecules through van der Waals force and hydrogen bond. Ca2+ could strengthen the crosslinking between CNC and PPI. In summary, it is proposed a valuable combination method to improve the solubility of PPI, and it is believed that this research is of great significance for expanding the application fields of PPI and modifying plant proteins.


Assuntos
Cálcio , Celulose , Nanopartículas , Proteínas de Ervilha , Solubilidade , Nanopartículas/química , Celulose/química , Proteínas de Ervilha/química , Cálcio/química , Pisum sativum/química , Interações Hidrofóbicas e Hidrofílicas , Cloreto de Cálcio/química , Ligação de Hidrogênio
16.
Food Chem X ; 23: 101702, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39184319

RESUMO

This research aimed to explore binding interactions between pea protein isolate (PPI) and selected strawberry flavorings including vanillin, γ-decalactone, furaneol, and (Z)-3-hexen-1-ol within an aqueous system. The results showed that binding affinities of PPI with all various functional group of flavor compounds decreased as temperature increased from 5 °C to 25 °C. Notably, at 25 °C, γ-decalactone displayed the highest binding affinity, followed by vanillin, (Z)-3-hexen-1-ol, and furaneol. Lowest binding was observed for furaneol, explained by its greater lipophilicity (lower partition coefficient values or LogP value) and molecular structure in each functional group in the flavor compounds. Thermodynamically, the interaction between PPI and each selected flavor compound was spontaneous, with evidence suggesting primary forces being hydrophobic interactions or hydrogen bonding/van der Waals forces. Computational molecular docking further confirmed these interaction types. This research provides insights into the interactions between PPI and strawberry flavorings, aiding in the selection of optimal flavor compound proportion for protein-rich products.

17.
Foods ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998558

RESUMO

The aim of this study was to prepare and characterize stable non-covalent ternary complexes based on pea protein (PP, 0.5%), hyaluronic acid (HA, 0.125%), and chlorogenic acid (CA, 0~0.03%). The ternary complexes were comprehensively evaluated for physicochemical attributes, stability, emulsifying capacities, antioxidant properties, and antimicrobial efficacy. PP-HA binary complexes were first prepared at pH 7, and then CA was bound to the binary complexes, as verified by fluorescence quenching. Molecular docking elucidated that PP interacted with HA and CA through hydrogen bonding, hydrophobic and electrostatic interactions. The particle size of ternary complexes initially decreased, then increased with CA concentration, peaking at 0.025%. Ternary complexes demonstrated good stability against UV light and thermal treatment. Emulsifying activity of complexes initially decreased and then increased, with a turning point of 0.025%, while emulsion stability continued to increase. Complexes exhibited potent scavenging ability against free radicals and iron ions, intensifying with higher CA concentrations. Ternary complexes effectively inhibited Staphylococcus aureus and Escherichia coli, with inhibition up to 0.025%, then decreasing with CA concentration. Our study indicated that the prepared ternary complexes at pH 7 were stable and possessed good functionality, including emulsifying properties, antioxidant activity, and antibacterial properties under certain concentrations of CA. These findings may provide valuable insights for the targeted design and application of protein-polysaccharide-polyphenol complexes in beverages and dairy products.

18.
J Agric Food Chem ; 72(28): 15890-15905, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953212

RESUMO

Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as Limosilactobacillus fermentum, Lactococcus lactis, Lactobacillus johnsonii, Lacticaseibacillus rhamnosus, and Bifidobacterium longum were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles. Notably, L. johnsonii NCC533 and L. fermentum NCC660 exhibited controlled proteolytic activities after 48 h of fermentation, enriching the matrix with taste-active amino acids, nucleotides, and peptides and improving umami and salty flavors while mitigating bitterness. This study has extended traditional volatile analyses, including nonvolatile metabolomic, proteomic, and sensory analyses and offering a detailed view of fermentation-induced biotransformations in pea-protein-based food. The results highlight the importance of combining comprehensive screening approaches and sensoproteomic techniques in developing tastier and more palatable plant-based protein products.


Assuntos
Fermentação , Aromatizantes , Proteínas de Ervilha , Pisum sativum , Paladar , Humanos , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Pisum sativum/química , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Aromatizantes/metabolismo , Aromatizantes/química , Feminino , Masculino , Adulto , Bebidas/análise , Bebidas/microbiologia
19.
J Agric Food Chem ; 72(28): 15875-15889, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957928

RESUMO

This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using Lactobacillus johnsonii NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.046 to 0.555 mM, are produced through the degradation of Pisum sativum's storage protein. Our findings suggest that compounds derived from fermentation enhance umami and kokumi sensations and reduce bitterness, thus improving the overall flavor perception of pea proteins. In addition, the analysis of intraspecific variations in the proteolytic activity of L. johnsonii and the genome-peptidome correlation analysis performed in this study point at cell-wall-bound proteinases such as PrtP and PrtM as the key genes necessary to initiate the flavor improving proteolytic cascade. This study provides valuable insights into the molecular mechanisms underlying the flavor improvement of pea protein during fermentation and identifies potential future research directions. The results highlight the importance of combining fermentation and senso(proteo)mics techniques in developing tastier and more palatable plant-based protein products.


Assuntos
Fermentação , Aromatizantes , Lactobacillus , Proteínas de Ervilha , Pisum sativum , Paladar , Humanos , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Lactobacillus/metabolismo , Lactobacillus/genética , Pisum sativum/química , Pisum sativum/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Proteômica , Adulto , Masculino , Feminino , Adulto Jovem , Bebidas/análise , Bebidas/microbiologia
20.
J Food Sci ; 89(8): 4997-5015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38980959

RESUMO

The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties. Results revealed the significant impact of emulsifier addition on microcapsule parameters. Powders lacking emulsifiers exhibited higher water solubility (57.10%-81.41%) compared to those with emulsifiers (24.64%-40.13%). Moreover, the emulsifier significantly decreased thermal stability (e.g., without emulsifier, Ton = 137.21°C; with emulsifier, Ton = 41.55°C) and adversely impacted encapsulation efficiency (highest efficiency achieved: 67%; with emulsifier: 21%).


Assuntos
Emulsificantes , Óleos Voláteis , Emulsificantes/química , Óleos Voláteis/química , Proteínas de Ervilha/química , Solubilidade , Tamanho da Partícula , Liofilização , Gelatina/química , Cápsulas , Óleo de Soja/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA