Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(32): 12250-12263, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37493643

RESUMO

Sterol regulatory element-binding protein, Sre1, regulates sterol biosynthesis, lipid metabolism, hypoxia adaptation, and virulence in some fungi, even though its roles are varied in fungal species. However, few studies report its other functions in fungi. Here, we report novel roles of Sre1 homolog, BbSre1, in the insect fungal pathogen, Beauveria bassiana, that regulates oxidative stress response, peroxisome division, and redox homeostasis. The gene disruption stain showed increased sensitivity to oxidative stress, which was in line with oxidative stress-induced-BbSre1 nuclear import and control of antioxidant and detoxification-involved genes. The gene mutation also inhibited peroxisome division, affected redox homeostasis, and impaired lipid/fatty acid metabolism and sterol biosynthesis, which was verified by downregulation of their associated genes. These data broaden our understanding of role of Sre1, which regulates peroxisome division, antioxidant, and detoxification-involved genes for control of redox homeostasis and oxidative stress response that links to lipid/fatty acid metabolism and sterol biosynthesis.


Assuntos
Antioxidantes , Proteínas de Ligação a Elemento Regulador de Esterol , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Antioxidantes/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Homeostase , Estresse Oxidativo , Oxirredução , Esteróis/metabolismo , Ácidos Graxos/metabolismo , Lipídeos
2.
J Inherit Metab Dis ; 46(2): 273-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522796

RESUMO

Peroxisomes are essential organelles involved in lipid metabolisms including plasmalogen biosynthesis and ß-oxidation of very long-chain fatty acids. Peroxisomes proliferate by the growth and division of pre-existing peroxisomes. The peroxisomal membrane is elongated by Pex11ß and then divided by the dynamin-like GTPase, DLP1 (also known as DRP1 encoded by DNM1L gene), which also functions as a fission factor for mitochondria. Nucleoside diphosphate kinase 3 (NME3) localized in both peroxisomes and mitochondria generates GTP for DLP1 activity. Deficiencies of either of these factors induce abnormal morphology of peroxisomes and/or mitochondria, and are associated with central nervous system dysfunction. To investigate whether the impaired division of peroxisomes affects lipid metabolisms, we assessed the phospholipid composition of cells lacking each of the different division factors. In fibroblasts from the patients deficient in DLP1, NME3, or Pex11ß, docosahexaenoic acid (DHA, C22:6)-containing phospholipids were found to be decreased. Conversely, the levels of several fatty acids such as arachidonic acid (AA, C20:4) and oleic acid (C18:1) were elevated. Mouse embryonic fibroblasts from Drp1- and Pex11ß-knockout mice also showed a decrease in the levels of phospholipids containing DHA and AA. Collectively, these results suggest that the dynamics of organelle morphology exert marked effects on the fatty acid composition of phospholipids.


Assuntos
Ácidos Docosa-Hexaenoicos , Peroxissomos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Dinaminas/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Morfogênese , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1869(11): 119330, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35917894

RESUMO

Peroxisomes are single-membrane organelles essential for cell metabolism including the ß-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.


Assuntos
Peróxido de Hidrogênio , Peroxissomos , Animais , Catalase/metabolismo , Homeostase , Humanos , Mamíferos , Camundongos , Transtornos Peroxissômicos , Peroxissomos/metabolismo
4.
Cells ; 11(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011719

RESUMO

Pex11, an abundant peroxisomal membrane protein (PMP), is required for division of peroxisomes and is robustly imported to peroxisomal membranes. We present a comprehensive analysis of how the Pichia pastoris Pex11 is recognized and chaperoned by Pex19, targeted to peroxisome membranes and inserted therein. We demonstrate that Pex11 contains one Pex19-binding site (Pex19-BS) that is required for Pex11 insertion into peroxisomal membranes by Pex19, but is non-essential for peroxisomal trafficking. We provide extensive mutational analyses regarding the recognition of Pex19-BS in Pex11 by Pex19. Pex11 also has a second, Pex19-independent membrane peroxisome-targeting signal (mPTS) that is preserved among Pex11-family proteins and anchors the human HsPex11γ to the outer leaflet of the peroxisomal membrane. Thus, unlike most PMPs, Pex11 can use two mechanisms of transport to peroxisomes, where only one of them depends on its direct interaction with Pex19, but the other does not. However, Pex19 is necessary for membrane insertion of Pex11. We show that Pex11 can self-interact, using both homo- and/or heterotypic interactions involving its N-terminal helical domains. We demonstrate that Pex19 acts as a chaperone by interacting with the Pex19-BS in Pex11, thereby protecting Pex11 from spontaneous oligomerization that would otherwise cause its aggregation and subsequent degradation.


Assuntos
Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Proliferação de Células , Humanos
5.
Plant Signal Behav ; 13(2): e1428518, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377762

RESUMO

Arabidopsis MAP KINASE17 (MPK17) was recently identified as a novel regulator of peroxisome division in response to salt stress. Further, the known peroxisome division factor PEROXISOME AND MITOCHONDRIAL DIVISION FACTOR1 (PMD1) genetically acts downstream of MPK17. We previously showed that mutants defective in either MPK17 or PMD1 fail to proliferate peroxisomes in response to NaCl stress. Here, we show that, unlike their abnormal NaCl responses, mpk17 and pmd1 mutants display wild type responses to other stresses known to alter peroxisome proliferation, suggesting that plants distinguish among peroxisome division-inducing stresses and alter the peroxisome division pathway based on the stress applied.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Peroxissomos/genética , Peroxissomos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA