Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39456744

RESUMO

Representatives of the colorless sulfur bacteria of the genus Beggiatoa use reduced sulfur compounds in the processes of lithotrophic growth, which is accompanied by the storage of intracellular sulfur. However, it is still unknown how the transformation of intracellular sulfur occurs in Beggiatoa representatives. Annotation of the genome of Beggiatoa leptomitoformis D-402 did not identify any genes for the oxidation or reduction of elemental sulfur. By searching BLASTP, two putative persulfide dioxygenase (PDO) homologs were found in the genome of B. leptomitoformis. In some heterotrophic prokaryotes, PDO is involved in the oxidation of sulfane sulfur. According to HPLC-MS/MS, the revealed protein was reliably detected in a culture sample grown only in the presence of endogenous sulfur and CO2. The recombinant protein from B. leptomitoformis was active in the presence of glutathione persulfide. The crystal structure of recombinant PDO exhibited consistency with known structures of type I PDO. Thus, it was shown that B. leptomitoformis uses PDO to oxidize endogenous sulfur. Additionally, on the basis of HPLC-MS/MS, RT-qPCR, and the study of PDO reaction products, we predicted the interrelation of PDO and Sox-system function in the oxidation of endogenous sulfur in B. leptomitoformis and the connection of this process with energy metabolism.


Assuntos
Dioxigenases , Oxirredução , Enxofre , Enxofre/metabolismo , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Glutationa/metabolismo , Glutationa/análogos & derivados , Espectrometria de Massas em Tandem , Sulfetos/metabolismo , Dissulfetos
2.
Biochim Biophys Acta Proteins Proteom ; 1873(1): 141059, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39471965

RESUMO

Oxidation and assimilation of persulfides in bacteria is often catalyzed by a persulfide dioxygenase and sulfurtransferase in consecutive reactions. Enzymes responsible for the oxidation of persulfides have not been clearly defined in Pseudomonas aeruginosa PAO1. The characterized mercaptopropionate dioxygenase (MDO) in P. aeruginosa PAO1 has been proposed to catalyze the oxidation of 3-mercaptopropionate. However, the physiological role of MDO is uncertain given the expression of a sulfurtransferase (ST) enzyme on the same operon as the thiol dioxygenase. The st gene had a co-occurrence frequency with mdo of 0.94 demonstrating the co-expression and physiological link of the two genes. There are four tandem rhodanese domains in the ST enzyme with two of the domains containing potential catalytic Cys residues (Cys191 and Cys435) capable of forming a persulfide. Only Cys435 was accessible in thiol quantification assays, and results from H/D-X MS analyses further established the accessibility of the domain containing Cys435. Both thiosulfate and mercaptopyruvate served as sulfur donors to the ST enzyme, with Cys435 forming the persulfide intermediate. Kinetic investigations of MDO suggested the enzyme had a broader substrate specificity than previously identified, oxidizing both mercaptopropionate and mercaptopyruvate thiol and persulfide substrates. The results obtained from these investigations provide insight into the overall mechanism and physiological role of the mdo operon in sulfide oxidation and assimilation.

3.
bioRxiv ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39464115

RESUMO

Under conditions of oxidative stress or iron starvation, iron-sulfur cluster biogenesis in E. coli is initiated by the cysteine desulfurase, SufS, via the SUF pathway. SufS is a type II cysteine desulfurase that catalyzes the PLP-dependent breakage of an L-cysteine C-S bond to generate L-alanine and a covalent active site persulfide as products. The persulfide is transferred from SufS to SufE and then to the SufBC2D complex, which utilizes it in iron-sulfur cluster biogenesis. Several lines of evidence suggest two conserved arginine residues that line the solvent side of the SufS active site could be important for function. To investigate the mechanistic roles of R56 and R359, the residues were substituted using site-directed mutagenesis to obtain R56A/K and R359A/K SufS variants. Steady state kinetics indicated R56 and R359 have moderate defects in the desulfurase half reaction but major defects in the transpersulfurase step. Fluorescence polarization binding assays showed that the loss of activity was not due to a defect in forming the SufS/SufE complex. Structural characterization of R56A SufS shows loss of electron density for the α3-α4 loop at the R56/G57 positions, consistent with a requirement of R56 for proper loop conformation. The structure of R359A SufS exhibits a conformational change in the α3-α4 loop allowing R56 to enter the active site and mimics the residue's position in the PLP-cysteine aldimine structure. Taken together, the kinetic, binding, and structural data support a mechanism where R359 plays a role in linking SufS catalysis with modulation of the α3-α4 loop to promote a close-approach interaction of SufS and SufE conducive to persulfide transfer.

4.
mBio ; 15(10): e0199124, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39324809

RESUMO

We investigated the impact of intracellular hydrogen sulfide (H2S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H2S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H2S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H2S hyperaccumulation affects iron availability within cells. We found that the H2S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H2S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE: H2S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H2S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H2S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H2S synthesis in bacterial physiology.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Sulfeto de Hidrogênio , Ferro , Ferro/metabolismo , Sulfeto de Hidrogênio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Estresse Oxidativo , Sulfurtransferases/metabolismo , Sulfurtransferases/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Transporte Biológico
5.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119811, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39128597

RESUMO

Iron­sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.


Assuntos
Proteínas Ferro-Enxofre , Ferro , Mitocôndrias , Enxofre , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Mitocôndrias/metabolismo , Humanos , Enxofre/metabolismo , Ferro/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Animais
6.
J Biol Chem ; 300(9): 107641, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39122000

RESUMO

Fe-S clusters are critical cofactors for redox chemistry in all organisms. The cysteine desulfurase, SufS, provides sulfur in the SUF Fe-S cluster bioassembly pathway. SufS is a dimeric, pyridoxal 5'-phosphate-dependent enzyme that uses cysteine as a substrate to generate alanine and a covalent persulfide on an active site cysteine residue. SufS enzymes are activated by an accessory transpersulfurase protein, either SufE or SufU depending on the organism, which accepts the persulfide product and delivers it to downstream partners for Fe-S assembly. Here, using Escherichia coli proteins, we present the first X-ray crystal structure of a SufS/SufE complex. There is a 1:1 stoichiometry with each monomeric unit of the EcSufS dimer bound to one EcSufE subunit, though one EcSufE is rotated ∼7° closer to the EcSufS active site. EcSufE makes clear interactions with the α16 helix of EcSufS and site-directed mutants of several α16 residues were deficient in EcSufE binding. Analysis of the EcSufE structure showed a loss of electron density at the EcSufS/EcSufE interface for a flexible loop containing the highly conserved residue R119. An R119A EcSufE variant binds EcSufS but is not active in cysteine desulfurase assays and fails to support Fe-S cluster bioassembly in vivo. 35S-transfer assays suggest that R119A EcSufE can receive a persulfide, suggesting the residue may function in a release mechanism. The structure of the EcSufS/EcSufE complex allows for comparison with other cysteine desulfurases to understand mechanisms of protected persulfide transfer across protein interfaces.


Assuntos
Liases de Carbono-Enxofre , Proteínas de Escherichia coli , Escherichia coli , Proteínas Ferro-Enxofre , Sulfetos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Sulfetos/química , Sulfetos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Cristalografia por Raios X , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Domínio Catalítico , Modelos Moleculares
7.
bioRxiv ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38826363

RESUMO

Fe-S clusters are critical cofactors for redox chemistry in all organisms. The cysteine desulfurase, SufS, provides sulfur in the SUF Fe-S cluster bioassembly pathway. SufS is a dimeric, PLP-dependent enzyme that uses cysteine as a substrate to generate alanine and a covalent persulfide on an active site cysteine residue. SufS enzymes are activated by an accessory transpersulfurase protein, either SufE or SufU depending on the organism, which accepts the persulfide product and delivers it to downstream partners for Fe-S assembly. Here, using E. coli proteins, we present the first X-ray crystal structure of a SufS/SufE complex. There is a 1:1 stoichiometry with each monomeric unit of the EcSufS dimer bound to one EcSufE subunit, though one EcSufE is rotated ~7° closer to the EcSufS active site. EcSufE makes clear interactions with the α16 helix of EcSufS and site-directed mutants of several α16 residues were deficient in EcSufE binding. Analysis of the EcSufE structure showed a loss of electron density at the EcSufS/EcSufE interface for a flexible loop containing the highly conserved residue R119. An R119A EcSufE variant binds EcSufS but is not active in cysteine desulfurase assays and fails to support Fe-S cluster bioassembly in vivo. 35S-transfer assays suggest that R119A EcSufE can receive a persulfide, suggesting the residue may function in a release mechanism. The structure of the EcSufS/EcSufE complex allows for comparison with other cysteine desulfurases to understand mechanisms of protected persulfide transfer across protein interfaces.

8.
Int Immunol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899915

RESUMO

Interferons (IFNs) are cytokines produced and secreted by immune cells when viruses, tumor cells, and so forth, invade the body. Their biological effects are diverse, including antiviral, cell growth-inhibiting, and antitumor effects. The main subclasses of interferons include type-I (e.g., IFN-α and IFN-ß) and type-II (IFN-γ), which activate intracellular signals by binding to type-I and type-II IFN receptors, respectively. We have previously shown that when macrophages are treated with supersulfide donors, which have polysulfide structures in which three or more sulfur atoms are linked within the molecules, IFN-ß-induced cellular responses, including signal transducer and activator of transcription 1 (STAT1) phosphorylation and inducible nitric oxide synthase (iNOS) expression, were strongly suppressed. However, the subfamily specificity of the suppression of IFN signals by supersulfides and the mechanism of this suppression are unknown. This study demonstrated that supersulfide donor N-acetyl-L-cysteine tetrasulfide (NAC-S2) can inhibit IFN signaling in macrophages stimulated not only with IFN-α/ß but also with IFN-γ. Our data suggest that NAC-S2 blocks phosphorylation of Janus kinases (JAKs), thereby contributes to the inhibition of phosphorylation of STAT1. Under the current experimental conditions, hydrogen sulfide (H2S) donor NaHS failed to inhibit IFN signaling. Similar to NAC-S2, carbohydrate-based supersulfide donor thioglucose tetrasulfide (TGS4) was capable of strongly inhibiting tumor necrosis factor-αproduction, iNOS expression, and nitric oxide production from macrophages stimulated with lipopolysaccharide. Further understanding of molecular mechanisms how supersulfide donors exhibit their inhibitory actions towards JAK/STAT signaling is necessary basis for development of supersulfide-based therapeutic strategy against autoimmune disorders with dysregulated IFN signaling.

9.
J Biol Chem ; 300(5): 107149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479599

RESUMO

Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.


Assuntos
Sulfetos , Tiossulfato Sulfurtransferase , Humanos , Compostos Bicíclicos com Pontes , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Quinona Redutases/metabolismo , Quinona Redutases/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfato Sulfurtransferase/química , Quinonas/química , Quinonas/metabolismo , Especificidade por Substrato
10.
Curr Opin Chem Biol ; 79: 102440, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38422870

RESUMO

Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H2S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.


Assuntos
Cisteína/análogos & derivados , Dissulfetos , Transição Epitelial-Mesenquimal , Sobrevivência Celular , Enxofre , Biologia
11.
J Environ Manage ; 354: 120416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408391

RESUMO

Hydrogen sulfide (H2S) is a toxic gas massively released during chicken manure composting. Diminishing its release requires efficient and low cost methods. In recent years, heterotrophic bacteria capable of rapid H2S oxidation have been discovered but their applications in environmental improvement are rarely reported. Herein, we investigated H2S oxidation activity of a heterotrophic thermophilic bacterium Geobacillus thermodenitrificans DSM465, which contains a H2S oxidation pathway composed by sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). This strain rapidly oxidized H2S to sulfane sulfur and thiosulfate. The oxidation rate reached 5.73 µmol min-1·g-1 of cell dry weight. We used G. thermodenitrificans DSM465 to restrict H2S release during chicken manure composting. The H2S emission during composting process reduced by 27.5% and sulfate content in the final compost increased by 34.4%. In addition, this strain prolonged the high temperature phase by 7 days. Thus, using G. thermodenitrificans DSM465 to control H2S release was an efficient and economic method. This study provided a new strategy for making waste composting environmental friendly and shed light on perspective applications of heterotrophic H2S oxidation bacteria in environmental improvements.


Assuntos
Compostagem , Geobacillus , Sulfeto de Hidrogênio , Animais , Galinhas , Esterco , Proteínas de Bactérias/metabolismo , Sulfetos/metabolismo , Geobacillus/metabolismo , Oxirredução
12.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397843

RESUMO

Reactive sulfur species (RSS) like hydrogen sulfide (H2S) and cysteine persulfide (Cys-SSH) emerged as key signaling molecules with diverse physiological roles in the body, depending on their concentration and the cellular environment. While it is known that H2S and Cys-SSH are produced by both colonocytes and by the gut microbiota through sulfur metabolism, it remains unknown how these RSS affect amebiasis caused by Entamoeba histolytica, a parasitic protozoan that can be present in the human gastrointestinal tract. This study investigates H2S and Cys-SSH's impact on E. histolytica physiology and explores potential therapeutic implications. Exposing trophozoites to the H2S donor, sodium sulfide (Na2S), or to Cys-SSH led to rapid cytotoxicity. A proteomic analysis of Cys-SSH-challenged trophozoites resulted in the identification of >500 S-sulfurated proteins, which are involved in diverse cellular processes. Functional assessments revealed inhibited protein synthesis, altered cytoskeletal dynamics, and reduced motility in trophozoites treated with Cys-SSH. Notably, cysteine proteases (CPs) were significantly inhibited by S-sulfuration, affecting their bacterial biofilm degradation capacity. Immunofluorescence microscopy confirmed alterations in actin dynamics, corroborating the proteomic findings. Thus, our study reveals how RSS perturbs critical cellular functions in E. histolytica, potentially influencing its pathogenicity and interactions within the gut microbiota. Understanding these molecular mechanisms offers novel insights into amebiasis pathogenesis and unveils potential therapeutic avenues targeting RSS-mediated modifications in parasitic infections.

13.
Anal Biochem ; 687: 115458, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38182032

RESUMO

In the late 1970s, sulfane sulfur was defined as sulfur atoms covalently bound only to sulfur atoms. However, this definition was not generally accepted, as it was slightly vague and difficult to comprehend. Thus, in the early 1990s, it was defined as "bound sulfur," which easily converts to hydrogen sulfide upon reduction with a thiol-reducing agent. H2S-related bound sulfur species include persulfides (R-SSH), polysulfides (H2Sn, n ≥ 2 or R-S(S)nS-R, n ≥ 1), and protein-bound elemental sulfur (S0). Many of the biological effects currently associated with H2S may be attributed to persulfides and polysulfides. In the 20th century, quantitative determination of "sulfane sulfur" was conventionally performed using a reaction called cyanolysis. Several methods have been developed over the past 30 years. Current methods used for the detection of H2S and polysulfides include colorimetric assays for methylene blue formation, sulfide ion-selective or polarographic electrodes, gas chromatography with flame photometric or sulfur chemiluminescence detection, high-performance liquid chromatography analysis with fluorescent derivatization of sulfides, liquid chromatography with tandem mass spectrometry, the biotin switch technique, and the use of sulfide or polysulfide-sensitive fluorescent probes. In this review, we discuss the methods reported to date for measuring sulfane sulfur and the results obtained using these methods.


Assuntos
Sulfetos , Enxofre , Cromatografia Gasosa-Espectrometria de Massas , Sulfetos/química , Enxofre/química
14.
Int Immunol ; 36(4): 143-154, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38180817

RESUMO

Innate immunity plays an important role in host defense against microbial infections. It also participates in activation of acquired immunity through cytokine production and antigen presentation. Pattern recognition receptors such as Toll-like receptors and nucleotide oligomerization domain-like receptors sense invading pathogens and associated tissue injury, after which inflammatory mediators such as pro-inflammatory cytokines and nitric oxide are induced. Supersulfides are molecular species possessing catenated sulfur atoms such as persulfide and polysulfide moieties. They have recently been recognized as important regulators in cellular redox homeostasis by acting as potent antioxidants and nucleophiles. In addition, recent studies suggested that supersulfides are critically involved in the regulation of innate immune and inflammatory responses. In this review, we summarize current knowledge of the chemistry and biology of supersulfides, with particular attention to their roles in regulation of innate immune, and inflammatory responses. Studies with animal models of infection and inflammation demonstrated the potent anti-inflammatory functions of supersulfides such as blocking pro-inflammatory signaling cascades, reducing oxidative stresses, and inhibiting replication of microbial pathogens including severe acute respiratory syndrome coronavirus 2. Precise understanding of how supersulfides regulate innate immune responses is the necessary requirement for developing supersulfide-based diagnostic as well as therapeutic strategies against inflammatory disorders.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Animais , Transdução de Sinais , Citocinas , Receptores Toll-Like
15.
Antioxid Redox Signal ; 40(10-12): 679-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37294201

RESUMO

Significance: Routine exposure to xenobiotics is unavoidable during our lifetimes. Certain xenobiotics are hazardous to human health, and are metabolized in the body to render them less toxic. During this process, several detoxification enzymes cooperatively metabolize xenobiotics. Glutathione (GSH) conjugation plays an important role in the metabolism of electrophilic xenobiotics. Recent Advances: Recent advances in reactive sulfur and supersulfide (RSS) analyses showed that persulfides and polysulfides bound to low-molecular-weight thiols, such as GSH, and to protein thiols are abundant in both eukaryotes and prokaryotes. The highly nucleophilic nature of hydropersulfides and hydropolysulfides contributes to cell protection against oxidative stress and electrophilic stress. Critical Issues: In contrast to GSH conjugation to electrophiles that is aided by glutathione S-transferase (GST), persulfides and polysulfides can directly form conjugates with electrophiles without the catalytic actions of GST. The polysulfur bonds in the conjugates are further reduced by perthioanions and polythioanions derived from RSS to form sulfhydrated metabolites that are no longer electrophilic but rather nucleophilic, and differ from metabolites that are formed via GSH conjugation. Future Directions: In view of the abundance of RSS in cells and tissues, metabolism of xenobiotics that is mediated by RSS warrants additional investigations, such as studies of the impact of microbiota-derived RSS on xenobiotic metabolism. Metabolites formed from reactions between electrophiles and RSS may be potential biomarkers for monitoring exposure to electrophiles and for studying their metabolism by RSS. Antioxid. Redox Signal. 40, 679-690.


Assuntos
Sulfetos , Enxofre , Xenobióticos , Humanos , Xenobióticos/metabolismo , Enxofre/metabolismo , Oxirredução , Compostos de Sulfidrila/metabolismo
16.
Anal Biochem ; 685: 115392, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967784

RESUMO

Sulfur is essential in the inception of life and crucial for maintaining human health. This mineral is primarily supplied through the intake of proteins and is used for synthesizing various sulfur-containing biomolecules. Recent research has highlighted the biological significance of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiol and proteins. Ingestion of exogenous sulfur compounds is essential for endogenous supersulfide production. However, the content and composition of supersulfides in foods remain unclear. This study investigated the supersulfide profiles of protein-rich foods, including edible animal meat and beans. Quantification of the supersulfide content revealed that natto, chicken liver, and bean sprouts contained abundant supersulfides. In general, the supersulfide content in beans and their derivatives was higher than that in animal meat. The highest proportion (2.15 %) was detected in natto, a traditional Japanese fermented soybean dish. These results suggest that the abundance of supersulfides, especially in foods like natto and bean sprouts, may contribute to their health-promoting properties. Our findings may have significant biological implications and warrant developing novel dietary intervention for the human health-promoting effects of dietary supersulfides abundantly present in protein-rich foods such as natto and bean sprouts.


Assuntos
Glycine max , Alimentos de Soja , Humanos , Carne , Enxofre
17.
Redox Biol ; 68: 102949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922764

RESUMO

Hydropersulfide and hydropolysulfide metabolites are increasingly important reactive sulfur species (RSS) regulating numerous cellular redox dependent functions. Intracellular production of these species is known to occur through RSS interactions or through translational mechanisms involving cysteinyl t-RNA synthetases. However, regulation of these species under cell stress conditions, such as hypoxia, that are known to modulate RSS remain poorly understood. Here we define an important mechanism of increased persulfide and polysulfide production involving cystathionine gamma lyase (CSE) phosphorylation at serine 346 and threonine 355 in a substrate specific manner, under acute hypoxic conditions. Hypoxic phosphorylation of CSE occurs in an AMP kinase dependent manner increasing enzyme activity involving unique inter- and intramolecular interactions within the tetramer. Importantly, both cellular hypoxia and tissue ischemia result in AMP Kinase dependent CSE phosphorylation that regulates blood flow in ischemic tissues. Our findings reveal hypoxia molecular signaling pathways regulating CSE dependent persulfide and polysulfide production impacting tissue and cellular response to stress.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosforilação , Adenilato Quinase/metabolismo , Cistationina gama-Liase/genética , Hipóxia
18.
Br J Pharmacol ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872133

RESUMO

For decades, the major focus of redox biology has been oxygen, the most abundant element on Earth. Molecular oxygen functions as the final electron acceptor in the mitochondrial respiratory chain, contributing to energy production in aerobic organisms. In addition, oxygen-derived reactive oxygen species including hydrogen peroxide and nitrogen free radicals, such as superoxide, hydroxyl radical and nitric oxide radical, undergo a complicated sequence of electron transfer reactions with other biomolecules, which lead to their modified physiological functions and diverse biological and pathophysiological consequences (e.g. oxidative stress). What is now evident is that oxygen accounts for only a small number of redox reactions in organisms and knowledge of biological redox reactions is still quite limited. This article reviews a new aspects of redox biology which is governed by redox-active sulfur-containing molecules-supersulfides. We define the term 'supersulfides' as sulfur species with catenated sulfur atoms. Supersulfides were determined to be abundant in all organisms, but their redox biological properties have remained largely unexplored. In fact, the unique chemical properties of supersulfides permit them to be readily ionized or radicalized, thereby allowing supersulfides to actively participate in redox reactions and antioxidant responses in cells. Accumulating evidence has demonstrated that supersulfides are indispensable for fundamental biological processes such as energy production, nucleic acid metabolism, protein translation and others. Moreover, manipulation of supersulfide levels was beneficial for pathogenesis of various diseases. Thus, supersulfide biology has opened a new era of disease control that includes potential applications to clinical diagnosis, prevention and therapeutics of diseases.

19.
Redox Biol ; 67: 102899, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748320

RESUMO

In an attempt to understand the cellular mechanisms of H2S signalling, recent research has focused on supersulfide (i.e., alkyl and inorganic hydropersulfide) formation and subsequent reactivity. While our understanding of supersulfides in biology has rapidly advanced, there are some chemical features of this unique functional group that require re-evaluation. Persulfides, such as glutathione hydropersulfide, have been called "supersulfide" as it is assumed that the alkyl hydropersulfide (RSSH) functional group is a superior nucleophile compared to the corresponding thiol (RSH) due to the alpha effect. However, recent quantum mechanical calculations and experimental data show that persulfides are not "super" nucleophiles, but rather potent electrophiles in cellular biology. It is proposed here that persulfides, via their electrophilic signalling effects, induces a cellular hormesis effect, which may explain the observed effects of altered RSSH production. Therefore, the electrophilic and thiol oxidant properties of persulfides should considered in cellular biology.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Sulfetos/química , Compostos de Sulfidrila/química , Transdução de Sinais
20.
Redox Biol ; 65: 102834, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536084

RESUMO

The excessive inflammatory response of macrophages plays a vital role in the pathogenesis of various diseases. The dynamic metabolic alterations in macrophages, including amino acid metabolism, are known to orchestrate their inflammatory phenotype. To explore a new metabolic pathway that regulates the inflammatory response, we examined metabolome changes in mouse peritoneal macrophages (PMs) in response to lipopolysaccharide (LPS) and found a coordinated increase of cysteine and its related metabolites, suggesting an enhanced demand for cysteine during the inflammatory response. Because Slc7a11, which encodes a cystine transporter xCT, was remarkably upregulated upon the pro-inflammatory challenge and found to serve as a major channel of cysteine supply, we examined the inflammatory behavior of Slc7a11 knockout PMs (xCT-KO PMs) to clarify an impact of the increased cysteine demand on inflammation. The xCT-KO PMs exhibited a prolonged upregulation of pro-inflammatory genes, which was recapitulated by cystine depletion in the culture media of wild-type PMs, suggesting that cysteine facilitates the resolution of inflammation. Detailed analysis of the sulfur metabolome revealed that supersulfides, such as cysteine persulfide, were increased in PMs in response to LPS, which was abolished in xCT-KO PMs. Supplementation of N-acetylcysteine tetrasulfide (NAC-S2), a supersulfide donor, attenuated the pro-inflammatory gene expression in xCT-KO PMs. Thus, activated macrophages increase cystine uptake via xCT and produce supersulfides, creating a negative feedback loop to limit excessive inflammation. Our study highlights the finely tuned regulation of macrophage inflammatory response by sulfur metabolism.


Assuntos
Cistina , Lipopolissacarídeos , Camundongos , Animais , Retroalimentação , Macrófagos/metabolismo , Acetilcisteína , Enxofre/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA