Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EFSA J ; 22(9): e8891, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238572

RESUMO

In accordance with the EFSA Strategy 2027 outlining the need for fit-for-purpose protocols for EFSA generic scientific assessments, the EFSA Panel on Plant Health (PLH Panel) developed standard protocols to harmonise the problem formulation process and outputs for mandates addressing recurrent scientific questions. Three types of recurring EFSA plant health mandates require generic scientific assessments: (i) pest categorisation; (ii) commodity risk assessment for the purpose of derogation to provisions of the EU plant health law and (iii) quantitative pest risk assessment. The three standard protocols are tailored to the appropriate level of detail and build on the existing guidance documents laying out the methods for conducting risk assessment in the plant health domain. To develop a standard protocol for pest categorisation, the PLH Panel adapted the latest version of the standard template reporting the evidence needs and the assessment questions to conclude whether a pest fulfils the criteria for being considered a potential quarantine pest for the EU. To develop a standard protocol for commodity risk assessment, the PLH Panel adapted the procedure and standard templates used for commodity risk assessment of high risk plants. To develop a standard protocol for quantitative pest risk assessments (qPRA), the Panel reviewed the existing guidance document on qPRA and the qPRAs published by the PLH Panel. The hierarchy of assessment questions and sub-questions used were identified and extracted. Based on this, a hierarchically organised IT-tool was formulated as protocol for the planning and documentation of future qPRAs.

2.
Annu Rev Entomol ; 69: 355-373, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37758223

RESUMO

Global trade in fresh fruit and vegetables, intensification of human mobility, and climate change facilitate fruit fly (Diptera: Tephritidae) invasions. Life-history traits, environmental stress response, dispersal stress, and novel genetic admixtures contribute to their establishment and spread. Tephritids are among the most frequently intercepted taxa at ports of entry. In some countries, supported by the rules-based trade framework, a remarkable amount of biosecurity effort is being arrayed against the range expansion of tephritids. Despite this effort, fruit flies continue to arrive in new jurisdictions, sometimes triggering expensive eradication responses. Surprisingly, scant attention has been paid to biosecurity in the recent discourse about new multilateral trade agreements. Much of the available literature on managing tephritid invasions is focused on a limited number of charismatic (historically high-profile) species, and the generality of many patterns remains speculative.


Assuntos
Drosophila , Características de História de Vida , Animais , Humanos , Mudança Climática , Nonoxinol
3.
EFSA J ; 20(11): e07523, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381112

RESUMO

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest risk assessment of Amyelois transitella (Lepidoptera: Pyralidae), the navel orangeworm, for the EU. The quantitative assessment considered two scenarios: (i) current practices and (ii) a requirement for chilled transport. The assessment focused on pathways of introduction, climatic conditions and cultivation of hosts allowing establishment, spread and impact. A. transitella is a common pest of almonds, pistachios and walnuts in California, which is the main source for these nuts imported into the EU. Based on size of the trade and infestation at origin, importation of walnuts and almonds from the USA was identified as the most important pathways for entry of A. transitella. Using expert knowledge elicitation (EKE) and pathway modelling, a median estimate of 2,630 infested nuts is expected to enter the EU each year over the next 5 years (90% certainty range (CR) from 338 to 26,000 infested nuts per year). However, due to estimated small likelihoods of transfer to a host, mating upon transfer and survival of founder populations, the number of populations that establish was estimated to be 0.000698 year-1 (median, 90% CR: 0.0000126-0.0364 year-1). Accordingly, the expected period between founding events is 1,430 years (median, 90% CR: 27.5-79,400 year). The likelihood of entry resulting in establishment is therefore considered very small. However, this estimate has high uncertainty, mainly concerning the processes of transfer of the insect to hosts and the establishment of founder populations by those that successfully transfer. Climate matching and CLIMEX modelling indicate that conditions are most suitable for establishment in the southern EU, especially around the Mediterranean basin. The median rate of natural spread was estimated to be 5.6 km/year (median, 90% CR 0.8-19.3 km/year), after an initial lag period of 3.1 year (mean, 90% CR 1.7-6.2 year) following the establishment of a founder population. If A. transitella did establish, estimated median yield losses in nuts were estimated to be in the order of 1-2% depending on the nut species and production system. A scenario requiring imports of nuts to be transported under chilled conditions was shown to provide potential to further reduce the likelihood of entry.

4.
EFSA J ; 20(2): e07104, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35140813

RESUMO

EFSA pest categorisations and pest risk assessments include the assessment of the potential establishment of plant pests. Together with the presence of host plants, climate suitability analysis is an important element to analyse the likelihood of potential establishment of a pest in an area. One of the main approaches used in EFSA plant health risk assessment is the analysis based on climate classifications i.e. evidencing the occurrence of climates enhancing pest development and persistence in a specific area. SCAN-Clim is a tool designed to support climate suitability analysis based on climate classifications. The current version is the first prototype of the tool, developed in the R language, currently used to support EFSA climate suitability analysis for pest categorisation and for quantitative pest risk assessment. Tested on over 34 EFSA works, SCAN-Clim significantly improved the speed of climate suitability maps generation guaranteeing a standardised map format and providing documentation on input/outputs. Further improvements will include the development of an interactive web app accessible through the EFSA R4EU Portal (expected to be delivered in 2022).

5.
J Environ Manage ; 290: 112556, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33882413

RESUMO

Terrestrial invasive species threaten the integrity of diverse and highly-valued ecosystems. The Minnesota Invasive Terrestrial Plants and Pests Center (MITPPC) was established by the state of Minnesota to fund research projects aimed at minimizing harms posed by the most threatening terrestrial invasive species to the state's prairies, wetlands, forests, and agriculture. MITPPC used the Analytic Hierarchy Process (AHP) to identify and prioritize diverse invasive species threats. We describe how MITPPC tailored AHP to establish its research priorities and highlight major outcomes and challenges with our approach. We found that subject matter experts considered factors associated with the severity of impact from invasion, rather than the potential for invasion, to be the greatest contributors in identifying the most threatening species. Specifically, out of the 17 total criteria identified by the experts to rank species, negative environmental impact was the most influential threat criterion. Currently, narrowleaf cattail, mountain pine beetle, and the causative agent of Dutch elm disease are top threats to Minnesota terrestrial ecosystems. AHP does not handle data-poor situations well; however, it allows for easy incorporation of new information over time for a species without undoing the original framework. The MITPPC prioritization has encouraged interdisciplinary, cross-project synergy among its research projects. Such outcomes, coupled with the transparent and evidence-based decision structure, strengthen the credibility of MITPPC activities with many stakeholders.


Assuntos
Ecossistema , Espécies Introduzidas , Agricultura , Minnesota , Doenças das Plantas
6.
Neotrop Entomol ; 50(4): 673-676, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33555561

RESUMO

Vespa mandarinia Smith is a species with native distribution in Asia and with the potential distribution of invasion in the Americas. We use ecological niche models to be able to predict their potential distribution in Asia and their projection in the Americas using KUENM in R in climate change scenarios. The ecological niche of V. mandarinia is potentially distributed in Asia and is expected with invasion potential in the east coast of USA, part of the México, Central America, and South America, while for 2050 it is projected with dispersion in North and Central of USA and rest of the Americas. The realized niche expanded in the Americas. Ecological niche modeling helps us infer the distribution of this species in Asia and its possible establishment of invasion in the USA, México, Central America, and South America.


Assuntos
Mudança Climática , Vespas , Distribuição Animal , Animais , América Central , Ecossistema , Modelos Teóricos , América do Norte , América do Sul
7.
Emerg Top Life Sci ; 4(5): 449-452, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33313786

RESUMO

COVID 19 has raised the profile of biosecurity. However, biosecurity is not only about protecting human life. This issue brings together mini-reviews examining recent developments and thinking around some of the tools, behaviours and concepts around biosecurity. They illustrate the multi-disciplinary nature of the subject, demonstrating the interface between research and policy. Biosecurity practices aim to prevent the spread of harmful organisms; recognising that 2020 is the International Year of Plant Health, several focus on plant biosecurity although invasive species and animal health concerns are also captured. The reviews show progress in developing early warning systems and that plant protection organisations are increasingly using tools that compare multiple pest threats to prioritise responses. The bespoke modelling of threats can inform risk management responses and synergies between meteorology and biosecurity provide opportunities for increased collaboration. There is scope to develop more generic models, increasing their accessibility to policy makers. Recent research can improve pest surveillance programs accounting for real-world constraints. Social science examining individual farmer behaviours has informed biosecurity policy; taking a broader socio-cultural approach to better understand farming networks has the potential to change behaviours in a new way. When encouraging public recreationists to adopt positive biosecurity behaviours communications must align with their values. Bringing together the human, animal, plant and environmental health sectors to address biosecurity risks in a common and systematic manner within the One Biosecurity concept can be achieved through multi-disciplinary working involving the life, physical and social sciences with the support of legislative bodies and the public.


Assuntos
Agricultura , Saúde Ambiental , Gestão de Riscos , Animais , COVID-19 , Fazendeiros , Humanos , Saúde Única , Pandemias , Controle de Pragas , Plantas , SARS-CoV-2
8.
Phytopathology ; 110(11): 1740-1750, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32954988

RESUMO

In order to prevent and control the emergence of biosecurity threats such as vector-borne diseases of plants, it is vital to understand drivers of entry, establishment, and spatiotemporal spread, as well as the form, timing, and effectiveness of disease management strategies. An inherent challenge for policy in combatting emerging disease is the uncertainty associated with intervention planning in areas not yet affected, based on models and data from current outbreaks. Following the recent high-profile emergence of the bacterium Xylella fastidiosa in a number of European countries, we review the most pertinent epidemiological uncertainties concerning the dynamics of this bacterium in novel environments. To reduce the considerable ecological and socio-economic impacts of these outbreaks, eco-epidemiological research in a broader range of environmental conditions needs to be conducted and used to inform policy to enhance disease risk assessment, and support successful policy-making decisions. By characterizing infection pathways, we can highlight the uncertainties that surround our knowledge of this disease, drawing attention to how these are amplified when trying to predict and manage outbreaks in currently unaffected locations. To help guide future research and decision-making processes, we invited experts in different fields of plant pathology to identify data to prioritize when developing pest risk assessments. Our analysis revealed that epidemiological uncertainty is mainly driven by the large variety of hosts, vectors, and bacterial strains, leading to a range of different epidemiological characteristics further magnified by novel environmental conditions. These results offer new insights on how eco-epidemiological analyses can enhance understanding of plant disease spread and support management recommendations.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Xylella , Europa (Continente) , Doenças das Plantas , Incerteza
9.
Proc Natl Acad Sci U S A ; 117(17): 9250-9259, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284411

RESUMO

Xylella fastidiosa is the causal agent of plant diseases that cause massive economic damage. In 2013, a strain of the bacterium was, for the first time, detected in the European territory (Italy), causing the Olive Quick Decline Syndrome. We simulate future spread of the disease based on climatic-suitability modeling and radial expansion of the invaded territory. An economic model is developed to compute impact based on discounted foregone profits and losses in investment. The model projects impact for Italy, Greece, and Spain, as these countries account for around 95% of the European olive oil production. Climatic suitability modeling indicates that, depending on the suitability threshold, 95.5 to 98.9%, 99.2 to 99.8%, and 84.6 to 99.1% of the national areas of production fall into suitable territory in Italy, Greece, and Spain, respectively. For Italy, across the considered rates of radial range expansion the potential economic impact over 50 y ranges from 1.9 billion to 5.2 billion Euros for the economic worst-case scenario, in which production ceases after orchards die off. If replanting with resistant varieties is feasible, the impact ranges from 0.6 billion to 1.6 billion Euros. Depending on whether replanting is feasible, between 0.5 billion and 1.3 billion Euros can be saved over the course of 50 y if disease spread is reduced from 5.18 to 1.1 km per year. The analysis stresses the necessity to strengthen the ongoing research on cultivar resistance traits and application of phytosanitary measures, including vector control and inoculum suppression, by removing host plants.


Assuntos
Olea/microbiologia , Doenças das Plantas/microbiologia , Xylella/metabolismo , Grécia , Itália , Modelos Econômicos , Modelos Teóricos , Olea/metabolismo , Espanha , Xylella/patogenicidade
10.
Ecol Appl ; 29(7): e01971, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302945

RESUMO

The international seed trade is considered relatively safe from a phytosanitary point of view and is therefore less regulated than trade in other plants for planting. However, the pests carried by traded seeds are not well known. We assessed insects and fungi in 58 traded seed lots of 11 gymnosperm and angiosperm tree species from North America, Europe, and Asia. Insects were detected by X-raying and molecular methods. The fungal community was characterized using high-throughput sequencing (HTS) and by growing fungi on non-selective agar. About 30% of the seed lots contained insect larvae. Gymnosperms contained mostly hymenopteran (Megastigmus spp.) and dipteran (Cecidomyiidae) larvae, while angiosperms contained lepidopteran (Cydia latiferreana) and coleopteran (Curculio spp.) larvae. HTS indicated the presence of fungi in all seed lots and fungi grew on non-selective agar from 96% of the seed lots. Fungal abundance and diversity were much higher than insect diversity and abundance, especially in angiosperm seeds. Almost 50% of all fungal exact sequence variants (ESVs) found in angiosperms were potential pathogens, in comparison with around 30% of potentially pathogenic ESVs found in gymnosperms. The results of this study indicate that seeds may pose a greater risk of pest introduction than previously believed or accounted for. A rapid risk assessment suggests that only a small number of species identified in this study is of phytosanitary concern. However, more research is needed to enable better risk assessment, especially to increase knowledge about the potential for transmission of fungi to seedlings and the host range and impact of identified species.


Assuntos
Florestas , Árvores , Animais , Europa (Continente) , América do Norte , Sementes
11.
J Environ Manage ; 246: 484-495, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31200182

RESUMO

Managing and monitoring invasive alien species (IAS) is costly, and because resources are limited, prioritization decisions are required for planning and management. We present findings on plant pest prioritization for 63 established invader species of natural and grazing ecosystems of Queensland, Australia. We used an expert elicitation approach to assess risk (species occurrence, spread, and impact) and feasibility of control for each IAS. We elicit semi-quantitative responses from diverse expert stakeholders to score IAS on three management approaches (biocontrol, chemical and mechanical) in relation to cost, effectiveness and practicality, and incorporate uncertainty in expert inputs and model outputs. In the process, we look for promising management opportunities as well as seek general trends across species' ecological groups and management methods. Stakeholders were cautiously optimistic about the feasibility of managing IAS. Taking into consideration all factors, the overall feasibility of control was uncorrelated with the stakeholders' level of confidence. However, within individual management criterion, positive trend was observed for the same bivariate traits for chemical control, and negative trends for biocontrol and mechanical controls. Utility and confidence in IAS management options were in the order: chemical > biocontrol = mechanical, with practicality and effectiveness being the main driver components. Management feasibility differed significantly between IAS life forms but not between habitats invaded. Lastly, we combined IAS risk assessment and management feasibility scores to create a risk matrix to guide policy goals (i.e. eradication, spread containment, protection of sensitive sites, targeted control, site management, monitoring, and limited action). The matrix identifies promising species to target for each of these policy outcomes. Overall, our general approach illustrates (i) the importance of understanding the feasibility of IAS control actions and the factors that drive it, and (ii) demonstrates how quantifying management feasibility can be used to enhance traditional risk assessment rankings to improve policy outcomes.


Assuntos
Ecossistema , Espécies Introduzidas , Austrália , Estudos de Viabilidade , Queensland
12.
EFSA J ; 16(8): e05350, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32626011

RESUMO

This Guidance describes a two-phase approach for a fit-for-purpose method for the assessment of plant pest risk in the territory of the EU. Phase one consists of pest categorisation to determine whether the pest has the characteristics of a quarantine pest or those of a regulated non-quarantine pest for the area of the EU. Phase two consists of pest risk assessment, which may be requested by the risk managers following the pest categorisation results. This Guidance provides a template for pest categorisation and describes in detail the use of modelling and expert knowledge elicitation to conduct a pest risk assessment. The Guidance provides support and a framework for assessors to provide quantitative estimates, together with associated uncertainties, regarding the entry, establishment, spread and impact of plant pests in the EU. The Guidance allows the effectiveness of risk reducing options (RROs) to be quantitatively assessed as an integral part of the assessment framework. A list of RROs is provided. A two-tiered approach is proposed for the use of expert knowledge elicitation and modelling. Depending on data and resources available and the needs of risk managers, pest entry, establishment, spread and impact steps may be assessed directly, using weight of evidence and quantitative expert judgement (first tier), or they may be elaborated in substeps using quantitative models (second tier). An example of an application of the first tier approach is provided. Guidance is provided on how to derive models of appropriate complexity to conduct a second tier assessment. Each assessment is operationalised using Monte Carlo simulations that can compare scenarios for relevant factors, e.g. with or without RROs. This document provides guidance on how to compare scenarios to draw conclusions on the magnitude of pest risks and the effectiveness of RROs and on how to communicate assessment results.

13.
J Econ Entomol ; 110(3): 1333-1344, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334271

RESUMO

Liriomyza huidobrensis (Blanchard) is an economically important and highly polyphagous worldwide pest. To establish a temperature-dependent phenology model, essential for understanding the development and growth of the pest population under a variety of climates and as part of a pest risk analysis, L. huidobrensis life-table data were collected under laboratory conditions at seven constant temperatures on its host faba bean (Vicia faba L.). Several nonlinear equations were fitted to each life stage to model the temperature-dependent population growth and species life history and finally compile an overall temperature-dependent pest phenology model using the Insect Life Cycle Modeling (ILCYM) software. Liriomyza huidobrensis completed development from egg to adult in all temperatures evaluated, except at 32 °C, which was lethal to pupae. Eggs did not develop at 35 °C. Mean development time of all immature stages decreased with increasing temperature. Nonlinear models predicted optimal temperature for immature survival between 20-25 °C (32-38% mortality of all immature stages). Life-table parameters simulated at constant temperatures indicated that L. huidobrensis develops within the range of 12-28 °C. Simulated life-table for predicting the population dynamics of L. huidobrensis under two contrasting environments showed that lowland temperatures at the coast of Peru (250 m.a.s.l.) presented better conditions for a potential population increase than highland (3,400 m.a.s.l.) conditions. The presented model linked with Geographic Information Systems will allow pest risk assessments in different environmental regions to support the regulation of pest movement to prevent pest entry into not-yet invaded regions as well as to implement effective management strategies.


Assuntos
Dípteros/fisiologia , Animais , Dípteros/crescimento & desenvolvimento , Feminino , Tábuas de Vida , Masculino , Modelos Biológicos , Peru , Dinâmica Populacional , Crescimento Demográfico , Temperatura
14.
EFSA J ; 15(8): e04879, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32625607

RESUMO

The Panel on Plant Health performed a pest risk assessment on Radopholus similis, the burrowing nematode for the EU. The quantitative assessment focused on entry, establishment, spread and impact on tropical and subtropical ornamental host plants, the main pathways for entry of R. similis into the EU. Infested consignments are expected to enter the risk assessment area on ornamentals under all scenarios. For citrus, which is a closed pathway for entry, outdoor establishment was assessed. Establishment may only take place after successful transfer from ornamental plants to citrus production systems. This event is called 'shift' in this assessment, to indicate that this is an unusual transfer. It has been estimated that establishment of this nematode in the open field in the EU citrus production areas under current temperatures is possible in most parts of the citrus production area in the EU. Temperature conditions will prevent the nematode from establishing only in the northernmost citrus areas and at higher altitudes in the south. Host plants for planting originating from infested places of production (greenhouses) within the risk assessment area are considered the main pathway for spread within the risk assessment area. Under current climatic conditions, the population of R. similis is not expected to reach damaging population levels in the open field. In case of increased temperatures due to global warming, the nematode population may reach damaging levels in very few places outdoors. Currently, main impact is considered for ornamental greenhouse production in the risk assessment area. Impact will be either caused by direct plant growth reductions or loss due to phytosanitary measures applied on regulated plants. Despite the fact that R. similis is globally considered as one of the most destructive plant parasitic nematodes, the impact in the risk assessment area is considered low.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA