RESUMO
Background & Aims: Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods: PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results: PegIFNα treatment efficiently reduced HDV RNA viraemia (â¼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (â¼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions: Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications: Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.
RESUMO
Background & Aims: HBV persistence is maintained by both an episomal covalently closed circular (ccc)DNA reservoir and genomic integration of HBV DNA fragments. While cccDNA transcription is regulated by Cullin4A-DDB1-HBx-mediated degradation of the SMC5/6 complex, HBsAg expression from integrants is largely SMC5/6 independent. Inhibiting neddylation of Cullin-RING ubiquitin ligases impairs degradation of substrates. Herein, we show that targeting neddylation pathway components by small-interfering (si)RNAs or the drug MLN4924 (pevonedistat) suppresses expression of HBV proteins from both cccDNA and integrants. Methods: An siRNA screen targeting secretory pathway regulators and neddylation genes was performed. Activity of MLN4924 was assessed in infection and integration models. Trans-complementation assays were used to study HBx function in cccDNA-driven expression. Results: siRNA screening uncovered neddylation pathway components (Nedd8, Ube2m) that promote HBsAg production post-transcriptionally. Likewise, MLN4924 inhibited production of HBsAg encoded by integrants and reduced intracellular HBsAg levels, independent of HBx. MLN4924 also profoundly inhibited cccDNA transcription in three infection models. Using the HBV inducible cell line HepAD38 as a model, we verified the dual action of MLN4924 on both cccDNA and integrants with sustained suppression of HBV markers during 42 days of treatment. Conclusions: Neddylation is required both for transcription of a cccDNA reservoir and for the genomic integration of viral DNA. Therefore, blocking neddylation might offer an attractive approach towards functional cure of chronic hepatitis B. Lay summary: Current treatments for chronic hepatitis B are rarely able to induce a functional cure. This is partly because of the presence of a pool of circular viral DNA in the host nucleus, as well as viral DNA fragments that are integrated into the host genome. Herein, we show that a host biological pathway called neddylation could play a key role in infection and viral DNA integration. Inhibiting this pathway could hold therapeutic promise for patients with chronic hepatitis B.
RESUMO
Cure from chronic HBV infection is rare with current therapies. Basic research has helped to fundamentally improve our knowledge of the viral life cycle and virus-host interactions, and provided the basis for several novel drug classes that are currently being developed or are being tested in clinical trials. While these novel compounds targeting the viral life cycle or antiviral immune responses hold great promise, we are still lacking a comprehensive understanding of the immunological and virological processes that occur at the site of infection, the liver. At the International Liver Congress 2021 (ILC 2021), a research think tank on chronic HBV infection focused on mechanisms within the liver that facilitate persistent infection and looked at the research questions that need to be addressed to fill knowledge gaps and identify novel therapeutic strategies. Herein, we summarise the discussion by the think tank and identify the key basic research questions that must be addressed in order to develop more effective strategies for the functional cure of HBV infection.
RESUMO
Previous studies have revealed multiple tissue- or cell-specific or enriched miRNA profiles. However, miRNA profiles enriched in hepatic cell types and their effect on HBV replication have not been well elucidated. In this study, primary human hepatocytes (PHHs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) were prepared from liver specimens of non-HBV-infected patients. Four hepatic cell type-enriched miRNA profiles were identified from purified liver cells miRNA microarray assay. The results revealed that 12 miRNAs, including miR-122-5p and miR-192-3p were PHH-enriched; 9 miRNAs, including miR-142-5p and miR-155-5p were KC-enriched; 6 miRNAs, including miR-126-3p and miR-222-3p were LSEC-enriched; and 14 miRNAs, including miR-214-3p and miR-199a-3p were HSC-enriched. By testing the effect of 11 PHH-enriched miRNAs on HBV production, we observed that miR-192-3p had the greatest pro-virus effect in hepatic cell lines. Moreover, we further found that miR-192-3p promoted HBV replication and gene expression through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in HepG2.2.15 cells. Additionally, the serum and hepatic miR-192-3p expression levels were significantly higher in chronic hepatitis B patients than in healthy controls and serum miR-192-3p positively correlated with the serum levels of HBV DNA and HBsAg. Collectively, we identified miRNA profiles enriched in four hepatic cell types and revealed that PHH-enriched miR-192-3p promoted HBV replication through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in hepatic cell lines. Our study provides a specific perspective for the role of hepatic cell type-enriched miRNA in interaction with viral replication and various liver pathogenesis.
Assuntos
Vírus da Hepatite B , MicroRNAs , Células Endoteliais/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/patologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , TransativadoresRESUMO
BACKGROUND: Hepatitis B e antigen (HBeAg) seroconversion is an important intermediate outcome in HBeAg-positive chronic hepatitis B patients. This study aimed to explore whether hepatitis B virus (HBV) RNA serum levels can predict HBeAg seroconversion treated with entecavir. METHODS: Serum samples from HBeAg-positive children previously treated with entecavir were retrospectively analyzed. HBV RNA levels were measured at baseline, weeks 12, 24, 48, 72 of therapy. Ability of individual biomarkers to predict HBeAg seroconversion was evaluated using receiver operating characteristics (ROC) analyzes. RESULTS: Serum HBV RNA was detectable in 51 children with a median of 6.05 (4.04-8.29) log10 IU/mL at baseline. Patients with subsequent HBeAg seroconversion showed a significantly larger decline in median HBV RNA levels during treatment from baseline to week 12 of 1.96 (0.30-3.38) and to week 24 of 2.27 (1.20-3.38) log10 IU/mL, respectively, in comparison to HBeAg-positive patients without HBeAg seroconversion (P < 0.001). Levels of HBV RNA at treatment weeks 12 and 24 showed good ability to predict HBeAg seroconversion (area under ROC scores > 0.85, P < 0.001). CONCLUSION: On-treatment HBV RNA dynamic predicts entecavir-induced HBeAg seroconversion in children with chronic hepatitis B living in China.
Assuntos
Antígenos E da Hepatite B , Hepatite B Crônica , Antivirais/uso terapêutico , Criança , DNA Viral , Guanina/análogos & derivados , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , RNA/uso terapêutico , Estudos Retrospectivos , Soroconversão , Resultado do TratamentoRESUMO
BACKGROUND & AIMS: Chronic hepatitis B is an incurable disease. Addressing the unmet medical need for therapies has been hampered by a lack of suitable cell culture models to investigate the HBV life cycle in a single experimental setup. We sought to develop a platform suitable to investigate all aspects of the entire HBV life cycle. METHODS: HepG2-NTCPsec+ cells were inoculated with HBV. Supernatants of infected cells were transferred to naïve cells. Inhibition of infection was determined in primary and secondary infected cells by high-content imaging of viral and cellular factors. Novel antivirals were triaged in cells infected with cell culture- or patient-derived HBV and in stably virus replicating cells. HBV internalisation and target-based receptor binding assays were conducted. RESULTS: We developed an HBV platform, screened 2,102 drugs and bioactives, and identified 3 early and 38 late novel HBV life cycle inhibitors using infectious HBV genotype D. Two early inhibitors, pranlukast (EC50 4.3 µM; 50% cytotoxic concentration [CC50] >50 µM) and cytochalasin D (EC50 0.07 µM; CC50 >50 µM), and 2 late inhibitors, fludarabine (EC50 0.1 µM; CC50 13.4 µM) and dexmedetomidine (EC50 6.2 µM; CC50 >50 µM), were further investigated. Pranlukast inhibited HBV preS1 binding, whereas cytochalasin D prevented the internalisation of HBV. Fludarabine inhibited the secretion of HBV progeny DNA, whereas dexmedetomidine interfered with the infectivity of HBV progeny. Patient-derived HBV genotype C was efficiently inhibited by fludarabine (EC50 0.08 µM) and dexmedetomidine (EC50 8.7 µM). CONCLUSIONS: The newly developed high-content assay is suitable to screen large-scale drug libraries, enables monitoring of the entire HBV life cycle, and discriminates between inhibition of early and late viral life cycle events. LAY SUMMARY: HBV infection is an incurable, chronic disease with few available treatments. Addressing this unmet medical need has been hampered by a lack of suitable cell culture models to study the entire viral life cycle in a single experimental setup. We developed an image-based approach suitable to screen large numbers of drugs, using a cell line that can be infected by HBV and produces large amounts of virus particles. By transferring viral supernatants from these infected cells to uninfected target cells, we could monitor the entire viral life cycle. We used this system to screen drug libraries and identified novel anti-HBV inhibitors that potently inhibit HBV in various phases of its life cycle. This assay will be an important new tool to study the HBV life cycle and accelerate the development of novel therapeutic strategies.
RESUMO
BACKGROUND & AIMS: Development of new and more effective therapies against hepatitis B virus (HBV) is limited by the lack of suitable small animal models. The HBV transgenic mouse model containing an integrated overlength 1.3-mer construct has yielded crucial insights, but this model unfortunately lacks covalently closed circular DNA (cccDNA), the episomal HBV transcriptional template, and cannot be cured given that HBV is integrated in every cell. METHODS: To solve these 2 problems, we generated a novel transgenic mouse (HBV1.1X), which generates an excisable circular HBV genome using Cre/LoxP technology. This model possesses a HBV1.1-mer cassette knocked into the ROSA26 locus and is designed for stable expression of viral proteins from birth, like the current HBV transgenic mouse model, before genomic excision with the introduction of Cre recombinase. RESULTS: We demonstrated induction of recombinant cccDNA (rcccDNA) formation via viral or transgenic Cre expression in HBV1.1X mice, and the ability to regulate HBsAg and HBc expression with Cre in mice. Tamoxifen-inducible Cre could markedly downregulate baseline HBsAg levels from the integrated HBV genome. To demonstrate clearance of HBV from HBV1.1X mice, we administered adenovirus expressing Cre, which permanently and significantly reduced HBsAg and core antigen levels in the murine liver via rcccDNA excision and a subsequent immune response. CONCLUSIONS: The HBV1.1X model is the first Cre-regulatable HBV transgenic mouse model and should be of value to mimic chronic HBV infection, with neonatal expression and tolerance of HBV antigens, and on-demand modulation of HBV expression. LAY SUMMARY: Hepatitis B virus (HBV) can only naturally infect humans and chimpanzees. Mouse models have been developed with the HBV genome integrated into mouse chromosomes, but this prevents mice from being cured. We developed a new transgenic mouse model that allows for HBV to be excised from mouse chromosomes to form a recombinant circular DNA molecule resembling the natural circular HBV genome. HBV expression could be reduced in these mice, enabling curative therapies to be tested in this new mouse model.
RESUMO
BACKGROUND & AIMS: Chronic HBV infection cannot be cured by current therapeutics owing to their limited ability to reduce covalently closed circular (ccc)DNA levels in the livers of infected individuals. Therefore, greater understanding of the molecular determinants of cccDNA formation and persistence is required. One key issue is the extent to which de novo nucleocapsid-mediated replenishment (reimport) contributes to cccDNA levels in an infected hepatocyte. METHODS: We engineered an infectious HBV mutant with a genome encoding a stop codon at position T67 in the HBV core open reading frame (ΔHBc HBV). Importantly, ΔHBc HBV virions cannot initiate nucleocapsid synthesis upon infection. Long-term in vitro HBV infection markers were followed for up for 9 weeks in HepG2-NTCP cells (A3 clone) and HBV DNA was quantified using a newly-developed, highly-precise PCR assay (cccDNA inversion quantitative PCR). RESULTS: ΔHBc and wild-type (WT) HBV resulted in comparable expression of HBV surface antigen (HBsAg), which could be blocked using the entry inhibitor Myrcludex B, confirming bona fide infection via the receptor sodium taurocholate cotransporting polypeptide (NTCP). In primary human hepatocytes, Huh7-NTCP, HepG2-NTCP, and HepaRG-NTCP cells, comparable copy numbers of cccDNA were formed. cccDNA levels, transcription of viral RNA, and HBsAg secretion remained comparably stable in WT and ΔHBc HBV-infected cells for at least 9 weeks. CONCLUSIONS: Our results imply that de novo synthesised HBc plays a minor role in transcriptional regulation of cccDNA. Importantly, we show that initially-formed cccDNA is stable in hepatocytes without requiring continuous replenishment in in vitro infection systems and contribution from de novo DNA-containing nucleocapsids is not required. Thus, short-term therapeutic targeting of capsid-reimport is likely an inefficient strategy in eliminating cccDNA in chronically infected hepatocytes. LAY SUMMARY: The hepatitis B virus can maintain itself in the liver for a patient's lifetime, causing liver injury and cancer. We have clarified exactly how it maintains itself in an infected cell. This now means we have a better idea at how to target the virus and cure a chronic infection.
RESUMO
BACKGROUND & AIMS: The human hepatitis B virus (HBV) is a major cause of chronic hepatitis and hepatocellular carcinoma, but molecular mechanisms driving liver disease and carcinogenesis are largely unknown. We therefore studied cellular pathways altered by HBV infection. METHODS: We performed gene expression profiling of primary human hepatocytes infected with HBV and proved the results in HBV-replicating cell lines and human liver tissue using real-time polymerase chain reaction and Western blotting. Activation of signal transducer and activator of transcription (STAT3) was examined in HBV-replicating human hepatocytes, HBV-replicating mice, and liver tissue from HBV-infected individuals using Western blotting, STAT3-luciferase reporter assay, and immunohistochemistry. The consequences of STAT3 activation on HBV infection and cell survival were studied by chemical inhibition of STAT3 phosphorylation and small interfering RNA-mediated knockdown of STAT3. RESULTS: Gene expression profiling of HBV-infected primary human hepatocytes detected no interferon response, while genes encoding for acute phase and antiapoptotic proteins were up-regulated. This gene regulation was confirmed in liver tissue samples of patients with chronic HBV infection and in HBV-related hepatocellular carcinoma. Pathway analysis revealed activation of STAT3 to be the major regulator. Interleukin-6-dependent and -independent activation of STAT3 was detected in HBV-replicating hepatocytes in cell culture and in vivo. Prevention of STAT3 activation by inhibition of Janus tyrosine kinases as well as small interfering RNA-mediated knockdown of STAT3-induced apoptosis and reduced HBV replication and gene expression. CONCLUSIONS: HBV activates STAT3 signaling in hepatocytes to foster its own replication but also to prevent apoptosis of infected cells. This very likely supports HBV-related carcinogenesis.
RESUMO
BACKGROUND: High mobility group box1 (HMGB1) and poly(ADP-ribose) polymerase1 (PARP1) proteins repair cellular DNA damage. Reduced expression of the corresponding genes can lead to an impaired DNA damage repair mechanism. Intracellular replication of hepatitis B virus (HBV) in such conditions can favor the integration of viral DNA into host genome leading to the development of hepatocellular carcinoma (HCC). OBJECTIVE: This study was performed to assess the expression of HMGB1 and PARP1 mRNAs in conjunction with the estimation of HBV replication intermediate pregenomic RNA (PgRNA) in various phases of HBV infection. MATERIALS: Eighty eight patients and 26 voluntary blood donors as controls were included in the study. Patients were grouped in to acute (AHB; n = 15), inactive carriers (IC; n = 36), cirrhosis (Cirr; n = 25) and hepatocellular carcinoma (HCC; n = 12). Serum HBV DNA was quantified by real time polymerase chain reaction (PCR) assay. Expression of HMGB1, PARP1 and PgRNA were evaluated using peripheral blood mononuclear cells (PBMCs) derived RNA by reverse transcription PCR (RT-PCR) and densitometry. RESULTS: Significant reduction of HMGB1 and PARP1 gene expressions (P < 0.05) were observed in patients than controls with more explicit decline of PARP1 (P = 0.0002). Both genes were significantly downregulated (P < 0.001) in ICs than controls. In ICs, HMGB1 was significantly lowered than cirrhosis (P = 0.002) and HCC (P = 0.0006) while PARP1 declined significantly (P = 0.04) than HCC. Level of PgRNA was comparable in all the disease categories. CONCLUSION: In conclusion, our findings indicate impaired DNA damage repair mechanisms in HBV infected cells of ICs. This, along with low viral load but higher level of PgRNA in this group is suggestive of the diversion of HBV replication pathway that might facilitate viral DNA integration in to host genome. Intrusion of HBV PgRNA reverse transcription in early stage of infection might appear advantageous to thwart the development of HCC.
RESUMO
Hepatitis B virus (HBV) infection is one of the major global health problems, especially in economically under-developed or developing countries. HBV infection can lead to a number of clinical outcomes including chronic infection, cirrhosis and liver cancer. It ranks among the top 10 causes of death, being responsible for around 1 million deaths every year. Despite the availability of a highly efficient vaccine and potent antiviral agents, HBV infection still remains a significant clinical problem, particularly in those high endemicity areas where vaccination of large populations has not been possible due to economic reasons. Although HBV is among the smallest viruses in terms of virion and genome size, it has numerous unique features that make it completely distinct from other DNA viruses. It has a partially double stranded DNA with highly complex genome organization, life cycle and natural history. Remarkably distinct from other DNA viruses, it uses an RNA intermediate called pregenomic RNA (pgRNA) and reverse transcriptase for its genome replication. Genome replication is accomplished by a complex mechanism of primer shifting facilitated by direct repeat sequences encoded in the genome. Further, the genome has evolved in such a manner that every single nucleotide of the genome is used for either coding viral proteins or used as regulatory regions or both. Moreover, it utilizes internal in-frame translation initiation codons, as well as different reading frames from the same RNA to generate different proteins with diverse functions. HBV also shows considerable genetic variability which has been related with clinical outcomes, replication potential, therapeutic response etc. This review aims at reviewing fundamental events of the viral life cycle including viral replication, transcription and translation, from the molecular standpoint, as well as, highlights the clinical relevance of genetic variability of HBV.