Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Genet Metab ; 143(1-2): 108538, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39096554

RESUMO

Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent congenital disorder of glycosylation, is an autosomal recessive disease caused by biallelic pathogenic variants in the PMM2 gene. There is no cure for this multisystemic syndrome. Some of the therapeutic approaches that are currently in development include mannose-1-phosphate replacement therapy, drug repurposing, and the use of small chemical molecules to correct folding defects. Preclinical models are needed to evaluate the efficacy of treatments to overcome the high lethality of the available animal model. In addition, the number of variants with unknown significance is increasing in clinical settings. This study presents the generation of a cellular disease model by knocking out the PMM2 gene in the hepatoma HepG2 cell line using CRISPR-Cas9 gene editing. The HepG2 knockout model accurately replicates the PMM2-CDG phenotype, exhibiting a complete absence of PMM2 protein and mRNA, a 90% decrease in PMM enzymatic activity, and altered ICAM-1, LAMP1 and A1AT glycoprotein patterns. The evaluation of PMM2 disease-causing variants validates the model's utility for studying new PMM2 clinical variants, providing insights for diagnosis and potentially for evaluating therapies. A CRISPR-Cas9-generated HepG2 knockout model accurately recapitulates the PMM2-CDG phenotype, providing a valuable tool for assessing disease-causing variants and advancing therapeutic strategies.

2.
Mol Genet Metab ; 143(1-2): 108531, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053125

RESUMO

PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.

3.
Biochimie ; 222: 123-131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38458414

RESUMO

PMM2-CDG, a disease caused by mutations in phosphomannomutase-2, is the most common congenital disorder of glycosylation. Yet, it still lacks a cure. Targeting phosphomannomutase-2 with pharmacological chaperones or inhibiting the phosphatase activity of phosphomannomutase-1 to enhance intracellular glucose-1,6-bisphosphate have been proposed as therapeutical approaches. We used Recombinant Bacterial Thermal Shift Assay to assess the binding of a substrate analog to phosphomannomutase-2 and the specific binding to phosphomannomutase-1 of an FDA-approved drug - clodronate. We also deepened the clodronate binding by enzyme activity assays and in silico docking. Our results confirmed the selective binding of clodronate to phosphomannomutase-1 and shed light on such binding.


Assuntos
Fosfotransferases (Fosfomutases) , Fosfotransferases (Fosfomutases)/metabolismo , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/química , Humanos , Simulação de Acoplamento Molecular , Ligantes , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ligação Proteica , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo
4.
Mol Genet Metab Rep ; 39: 101067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433930

RESUMO

Congenital disorder of glycosylation type Ia (CDG-Ia) is an autosomal recessive genetic disease caused by a mutation in the phosphomannomutase 2 (PMM2) gene. We have identified a 13-month-old boy who has been diagnosed with CDG-Ia. He displays several characteristic symptoms, including cerebellar hypoplasia, severe developmental retardation, hypothyroidism, impaired liver function, and abnormal serum ferritin levels. Through whole-exome sequencing, we discovered novel complex heterozygous mutations in the PMM2 gene, specifically the c.663C > G (p.F221L) mutation and loss of exon 2. Further analysis revealed that the enzymatic activity of the mutant PMM2 protein was significantly reduced by 44.97% (p < 0.05) compared to the wild-type protein.

5.
Cell Rep ; 43(3): 113883, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38430517

RESUMO

Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação
6.
Biochim Biophys Acta Gen Subj ; 1868(2): 130526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049040

RESUMO

INTRODUCTION: The study of protein stability is crucial to biochemistry and relies on different methodologies. Recently, the Cellular Thermal Shift Assay has been introduced to study protein stability in whole cells. METHODS: We report a novel application of CeTSA named ReBaTSA. This Recombinant Bacterial TSA was performed using clear extracts from bacteria expressing a recombinant protein, incubated at different temperatures, centrifuged and analyzed via SDS-PAGE. RESULTS AND CONCLUSIONS: We demonstrated the feasibility and reliability of this simplified approach. We validated the method using the protein phosphomannomutase-2 and its common mutants, which were compared in the presence or the absence of a known ligand.


Assuntos
Lisados Bacterianos , Proteínas Mutantes , Reprodutibilidade dos Testes , Estabilidade Proteica , Proteínas Recombinantes/genética
7.
Genet Med ; 26(2): 101027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955240

RESUMO

PURPOSE: In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS: Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS: Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION: Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.


Assuntos
Ataxia Cerebelar , Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Acidente Vascular Cerebral , Adulto , Humanos , Pré-Escolar , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Acetazolamida/uso terapêutico , Seguimentos , Estudos Prospectivos
8.
Mol Genet Metab Rep ; 38: 101035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38130891

RESUMO

Inherited deficiency of phosphomannomutase 2 (PMM2) (aka PMM2-CDG) is the most common congenital disorders of glycosylation (CDG) and has no cure. With debilitating morbidity and significant mortality, it is imperative to explore novel, safe, and effective therapies for the disease. Our Proof-of-Concept study showed that AAV9-PMM2 infection of patient fibroblasts augmented PMM2 expression and improved glycosylation. Thus, AAV9-PMM2 gene replacement is a promising therapeutic strategy for PMM2-CDG patients.

9.
Genes (Basel) ; 14(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37628636

RESUMO

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Autofagia/genética , Mitocôndrias/genética , Metabolismo Energético
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(2): 223-228, 2023 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-36854702

RESUMO

Phosphomannomutase 2 deficiency is the most common form of N-glycosylation disorders and is also known as phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG). It is an autosomal recessive disease with multi-system involvements and is caused by mutations in the PMM2 gene (OMIM: 601785), with varying severities in individuals. At present, there is still no specific therapy for PMM2-CDG, and early identification, early diagnosis, and early treatment can effectively prolong the life span of pediatric patients. This article reviews the advances in the diagnosis and treatment of PMM2-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Criança , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/terapia , Mutação
11.
Mol Genet Metab Rep ; 32: 100901, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36046393

RESUMO

Pathogenic variants in DHDDS have been associated with either autosomal recessive retinitis pigmentosa or DHDDS-CDG. Heterozygous variants in DHDDS have been described in patients with a progressive neurodegenerative disease. Here we report on an individual presenting with a multisystem CDG phenotype who was diagnosed with known homozygous pathogenic DHDDS variants, previously associated with isolated retinitis pigmentosa. An adult Ashkenazi Jewish female developed multiple symptoms of late onset type 1 CDG including seizures, ataxia, protein losing enteropathy, tremor, and titubation in association with elevated mono-oligo/di-oligo transferrin ratio in blood, and classic retinitis pigmentosa. She was diagnosed by whole exome sequencing with the common Ashkenazi Jewish, homozygous p.K42E variants in DHDDS. She was started on Acetazolamide and responded well to the treatment which improved her titubation, tremor, and generalized edema. Reviewing the literature, families with DHDDS variants and multisystem presentation were different from our patient's presentation in terms of clinical manifestations, severity, genetic defect, and mode of inheritance. In previously reported patients with neurologic symptoms including seizures, movement abnormalities, and global development delay, the phenotype was caused by heterozygous pathogenic variants in DHDDS. The infant who was reported with a multisystem phenotype and fatal type 1 CDG had compound heterozygosity for a nonsense and a splice site variant in DHDDS, resulting in DHDDS-CDG. The discovery of the novel phenotype associated with the common p.K42E pathogenic variant in DHDDS expands the spectrum of CDG and further enhances our understanding on the role of DHDDS in glycosylation beyond the retina.

12.
Front Immunol ; 13: 869031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603178

RESUMO

Congenital disorders of glycosylation (CDG) are inherited metabolic diseases characterized by mutations in enzymes involved in different steps of protein glycosylation, leading to aberrant synthesis, attachment or processing of glycans. Recently, immunological dysfunctions in several CDG types have been increasingly documented. Despite these observations, detailed studies on immune cell dysfunction in PMM2-CDG and other CDG types are still scarce. Studying PMM2-CDG patient immune cells is challenging due to limited availability of patient material, which is a result of the low incidence of the disease and the often young age of the subjects. Dedicated immune cell models, mimicking PMM2-CDG, could circumvent many of these problems and facilitate research into the mechanisms of immune dysfunction. Here we provide initial observations about the immunophenotype and the phagocytic function of primary PMM2-CDG monocytes. Furthermore, we assessed the suitability of two different glycosylation-impaired human monocyte models: tunicamycin-treated THP-1 monocytes and PMM2 knockdown THP-1 monocytes induced by shRNAs. We found no significant differences in primary monocyte subpopulations of PMM2-CDG patients as compared to healthy individuals but we did observe anomalous surface glycosylation patterns in PMM2-CDG patient monocytes as determined using fluorescent lectin binding. We also looked at the capacity of monocytes to bind and internalize fungal particles and found a slightly increased uptake of C. albicans by PMM2-CDG monocytes as compared to healthy monocytes. Tunicamycin-treated THP-1 monocytes showed a highly decreased uptake of fungal particles, accompanied by a strong decrease in glycosylation levels and a high induction of ER stress. In contrast and despite a drastic reduction of the PMM2 enzyme activity, PMM2 knockdown THP-1 monocytes showed no changes in global surface glycosylation levels, levels of fungal particle uptake similar to control monocytes, and no ER stress induction. Collectively, these initial observations suggest that the absence of ER stress in PMM2 knockdown THP-1 cells make this model superior over tunicamycin-treated THP-1 cells and more comparable to primary PMM2-CDG monocytes. Further development and exploitation of CDG monocyte models will be essential for future in-depth studies to ultimately unravel the mechanisms of immune dysfunction in CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Humanos , Monócitos/metabolismo , Fosfotransferases (Fosfomutases)/deficiência , Tunicamicina/metabolismo , Tunicamicina/farmacologia
13.
J Clin Res Pediatr Endocrinol ; 14(3): 275-286, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35308014

RESUMO

Objective: Phosphomannomutase 2 deficiency (PMM2-CDG) is a disorder of protein N-glycosylation with a wide clinical spectrum. Hypoglycemia is rarely reported in PMM2-CDG. In this study, we evaluated cause, treatment options and outcomes in cases with hypoglycemia in the course of PMM2-CDG. Methods: Clinical records of patients followed with PMM2-CDG within the last two decades were reviewed. Medical data of patients with hypoglycemia were evaluated in more detail. Demographic and clinical findings, organ involvement and laboratory investigations at time of hypoglycemia were recorded. Time of first attack of hypoglycemia, cause, treatment modalities, duration of hypoglycemia (permanent/transient), and duration of treatment, as well as outcome were also recorded. Other published cases with PMM2-CDG and hypoglycemia are also reviewed in order to elucidate characteristics as well as pathophysiology of hypoglycemia. Results: Nine patients with PMM2-CDG were reviewed, and hypoglycemia was present in three cases. All three had hyperinsulinism as the cause of hypoglycemia. In the first two cases reported here, serum insulin level concurrent with hypoglycemic episodes was elevated, and glucose response was exaggerated during glucagon test, favoring hyperinsulinism. However, in the third case, the serum insulin level at time of hypoglycemia was not so high but hypoglycemia responded well to diazoxide. Hyperinsulinism was permanent in two of these three cases. No genotype-phenotype correlation was observed with respect to hyperinsulinism. Conclusion: The main cause of hypoglycemia in PMM2-CDG appears to be hyperinsulinism. Although insulin levels at the time of hypoglycemia may not be very high, hypoglycemia in patients with PMM2 responds well to diazoxide.


Assuntos
Hiperinsulinismo , Hipoglicemia , Insulinas , Defeitos Congênitos da Glicosilação , Diazóxido/uso terapêutico , Humanos , Hipoglicemiantes , Fosfotransferases (Fosfomutases)/deficiência
14.
Clin Case Rep ; 10(2): e05347, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154715

RESUMO

Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, characterized by a defect in the protein glycosylation process. Enzymes involved in this metabolic mechanism have ubiquitous distribution; thus, their alteration can cause systemic involvement and considerable phenotypic variability. Nephrotic syndrome (NS) is a clinical condition characterized by edema, hypoalbuminemia, hyperlipidemia, and proteinuria. We hereby report the case of a girl with central hypotonia, epilepsy, and severe psychomotor delay diagnosed with phosphomannomutase 2 deficiency (PMM2-CDG) after presenting with nephrotic syndrome at age 4 years.

15.
Front Endocrinol (Lausanne) ; 13: 1102307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726472

RESUMO

Congenital hyperinsulinemia (CHI), is a clinically heterogeneous disorder that presents as a major cause of persistent and recurrent hypoglycemia during infancy and childhood. There are 16 subtypes of CHI-related genes. Phosphomannomutase 2 hyperinsulinemia (PMM2-HI) is an extremely rare subtype which is first reported in 2017, with only 18 families reported so far. This review provides a structured description of the genetic pathogenesis, and current diagnostic and therapeutic advances of PMM2-HI to increase clinicians' awareness of PMM2-HI.


Assuntos
Hiperinsulinismo , Hipoglicemia , Fosfotransferases (Fosfomutases) , Humanos , Criança , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/genética , Hiperinsulinismo/terapia , Hipoglicemia/etiologia , Fosfotransferases (Fosfomutases)/genética
16.
Children (Basel) ; 8(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34682117

RESUMO

BACKGROUND: Growth failure is commonly reported in children with PMM2-CDG. The aim of the study was to delineate the longitudinal anthropometric phenotype of patients with PMM2-CDG and attempt to find some correlations between the genotype and anthropometric phenotype. MATERIALS AND METHODS: Retrospective chart review of PMM2-CDG patients' medical records was performed regarding the anthropometric measurements (head circumference, body length/height, body weight, body mass index) and PMM2 variants. RESULTS: A negative tendency of growth evolution was observed. Patients found to be heterozygous for R141H grew slower than other patients. Body weight was correlated with body height. A negative tendency of the growth rate of head circumference was observed. Patients found to be heterozygous for R141H experienced slower growth than other patients. CONCLUSIONS: Long-term observational studies are essential to characterize the anthropometric phenotype. The body growth failure, as well as head circumference growth failure, were more severe in patients found to be heterozygous for R141H.

17.
Acta bioquím. clín. latinoam ; 55(3): 283-288, jul. 2021. graf
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1374051

RESUMO

Resumen Los desórdenes congénitos de la glicosilación son un grupo de desórdenes genéticos de herencia, generalmente autosómica y recesiva. Descriptos por primera vez por Jaeken en 1980, comprenden defectos en la N- y O-glicosilación de proteínas y de lípidos. Los pacientes con defectos de N-glicosilación muestran un amplio espectro de manifestaciones clínicas, con alto compromiso neurológico. Por esta razón, se hace necesaria la implementación de una metodología que ayude en el diagnóstico. El Laboratorio de Pesquisa Neonatal incorporó el isoelectroenfoque de transferrina como método de screening y, posteriormente, secuenciación del gen PMM2 como método confirmatorio para las muestras con screening alterado. Se presentan, en este trabajo, la experiencia y los resultados obtenidos entre noviembre de 2017 y diciembre de 2018, los que permitieron establecer un algoritmo de trabajo que impactó positivamente en el diagnóstico de estos pacientes.


Abstract Congenital disorders of glycosylation are a group of genetic, autosomal and recessive diseases, first reported by Jaeken in 1980. These include defects in N- and O-glycosilation of proteins and lipids. Most N-glycosylation defects are multi-organ diseases with neurological involvement. Therefore, the implementation of a screening methodology is necessary to contribute in the diagnosis. Newborn Screening Laboratory included the transferrin isoelectrofocusing as a screening method and, subsequently, PMM2 gene sequencing as a confirmatory method for samples with altered screening. The present study shows the experience and results obtained between November 2017 and December 2018, which made it possible to establish an algorithm that positively impacted in the diagnosis of these patients.


Resumo Os defeitos congênitos da glicosilação (CDG) são um grupo de doenças genéticas, autossômicas e recessivas.Descritos pela primeira vez por Jaeken em 1980, eles incluem na N- e O- glicosilação de proteínas e lipídios.Pacientes com defeitos da N-glicosilação mostram um amplo espectro de manifestações clínicas, com alto comprometimento neurológico. Por esse motivo, a implementação de uma metodologia necessária para contribuirno diagnóstico. O Laboratório de Pesquisa Neonatal incorporou isoeletro-enfoque da transferrina (IEF)como método de screening e posterior sequenciamento do gene PMM2 como método confirmatório para asamostras que apresentaram triagem alterada. Neste trabalho, são apresentadas as experiências e resultadosobtidos entre novembro de 2017 e dezembro de 2018, que permitiram estabelecer um algoritmo de trabalhoque teve um impacto positivo no diagnóstico desses pacientes.


Assuntos
Anormalidades Congênitas , Glicosilação
18.
Mol Genet Metab ; 133(4): 397-399, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140212

RESUMO

PMM2-CDG is the most common congenital disorder of glycosylation (CDG) accounting for almost 65% of known CDG cases affecting N-glycosylation. Abnormalities in N-glycosylation could have a negative impact on many endocrine axes. There is very little known on the effect of impaired N-glycosylation on the hypothalamic-pituitary-adrenal axis function and whether CDG patients are at risk of secondary adrenal insufficiency and decreased adrenal cortisol production. Cortisol and ACTH concentrations were simultaneously measured between 7:44 am to 1 pm in forty-three subjects (20 female, median age 12.8 years, range 0.1 to 48.6 years) participating in an ongoing international, multi-center Natural History study for PMM2-CDG (ClinicalTrials.gov Identifier: NCT03173300). Of the 43 subjects, 11 (25.6%) had cortisol below 5 µg/dl and low to normal ACTH levels, suggestive of secondary adrenal insufficiency. Two of the 11 subjects have confirmed central adrenal insufficiency and are on hydrocortisone replacement and/or stress dosing during illness; 3 had normal and 1 had subnormal cortisol response to ACTH low-dose stimulation test but has not yet been started on therapy; the remaining 5 have upcoming stimulation testing planned. Our findings suggest that patients with PMM2-CDG may be at risk for adrenal insufficiency. Monitoring of morning cortisol and ACTH levels should be part of the standard care in patients with PMM2-CDG.


Assuntos
Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/fisiopatologia , Fosfotransferases (Fosfomutases)/sangue , Adolescente , Insuficiência Adrenal/etiologia , Adulto , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação , Feminino , Glicosilação , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fosfotransferases (Fosfomutases)/genética , Sistema Hipófise-Suprarrenal/fisiologia , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
19.
Endocr J ; 68(5): 605-611, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33583911

RESUMO

Primary ovarian insufficiency (POI) is a highly heterogeneous condition, and its underlying causes remain to be clarified in a large fraction of patients. Congenital disorders of glycosylation (CDG) are multisystem diseases caused by mutations of a number of genes involved in N-glycosylation or O-glycosylation, and the most frequent form is PMM2-CDG (alias, CDG-Ia) resulting from biallelic mutations in PMM2 encoding phosphomannomutase-2 involved in N-glycosylation. Here, we examined a 46,XX Japanese female with syndromic POI accompanied by an undetectable level of serum anti-Müllerian hormone (AMH). Whole exome sequencing identified biallelic pathogenic mutations of PMM2 (a novel c.34G>C:p.(Asp12His) of maternal origin and a recurrent c.310C>G:p.(Leu104Val) of paternal origin) (NM_000303.3), and N-glycosylation studies detected asialotransferrin and disialotransferrin characteristic of PMM2-CDG, in addition to normally glycosylated tetrasialotransferrin. Clinical assessment showed cerebellar hypotrophy, which is a fairly characteristic and highly prevalent feature in PMM2-CDG, together with multiple non-specific features reported in PMM2-CDG such as characteristic face, intellectual disability, skeletal abnormalities, and low blood antithrombin III value. These results including the undetectable level of serum AMH, in conjunction with previously reported findings suggestive of the critical role of glycosylation in oocyte development and function, imply that PMM2-CDG almost invariably leads to POI primarily because of the defective oogenesis and/or oocyte-dependent early folliculogenesis rather than the compromised bioactivity of FSH/LH with defective glycosylation. Thus, it is recommended to examine PMM2 in patients with syndromic POI, especially in those with cerebellar ataxia/hypotrophy.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/deficiência , Insuficiência Ovariana Primária/genética , Feminino , Humanos , Mutação , Fosfotransferases (Fosfomutases)/genética , Sequenciamento do Exoma , Adulto Jovem
20.
Orphanet J Rare Dis ; 16(1): 102, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632285

RESUMO

A recent report on long-term dietary mannose supplementation in phosphomannomutase 2 deficiency (PMM2-CDG) claimed improved glycosylation and called for double-blind randomized study of the dietary supplement in PMM2-CDG patients. A lack of efficacy of short-term mannose supplementation in multiple prior reports challenge this study's conclusions. Additionally, some CDG types have previously been reported to demonstrate spontaneous improvement in glycosylated biomarkers, including transferrin. We have likewise observed improvements in transferrin glycosylation without mannose supplementation. This observation questions the reliability of transferrin as a therapeutic outcome measure in clinical trials for PMM2-CDG. We are concerned that renewed focus on mannose therapy in PMM2-CDG will detract from clinical trials of more promising therapies. Approaches to increase efficiency of clinical trials and ultimately improve patients' lives requires prospective natural history studies and identification of reliable biomarkers linked to clinical outcomes in CDG. Collaborations with patients and families are essential to identifying meaningful study outcomes.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Humanos , Manose , Fosfotransferases (Fosfomutases)/deficiência , Fosfotransferases (Fosfomutases)/genética , Estudos Prospectivos , Reprodutibilidade dos Testes , Transferrina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA