RESUMO
We investigate an interlayer of 6,6'-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-[1,1'-binaphthalene]-(2,2'-diyl)bis(oxy)bis(propane-3,1-diyl)bis(phosphonic acid) (BINOL-PA) with undoped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) coverage. The incorporation of the 1,10-bi-2-naphthol central core enhances π-π stacking and reduces charge recombination at the interface. Compared to PTAA alone (0.95 eV), BINOL-PA/PTAA exhibits a shorter distance from the Fermi energy (EF) to the valence-band maximum (VBM) (0.36 eV). Two phosphoric acid units in BINOL-PA fine-tune the molecular dipoles. Theoretical calculations reveal electrostatic surface potential differences between BINOL-PA and PTAA in their backbone structure. Open-circuit voltage decay (OCVD) and electrochemical impedance spectroscopy (EIS) results suggest suppressed interface recombination. The photovoltaic conversion efficiency (PCE), short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) for the BINOL-PA/PTAA device are measured as 21.02%, 22.67 mA cm-2, 1.12 V, and 82.8%, respectively, all higher than those achieved by the PTAA device with a PCE of 18%. BINOL-PA/PTAA significantly elevates VOC and FF values compared with dopant-free PTAA alone. The champion device retains over 89% of its initial PCE after being exposed to an ambient environment without encapsulation for more than 30 days. The thermal aging test conducted under a nitrogen atmosphere demonstrates that the efficiency retention rate for BINOL-PA/PTAA displays 60% of its initial efficiency after 1500 h.
RESUMO
Objective: To analyze the correlation between changes in the concentration of glyphosate (GLY) and its metabolites (AMPA) in patients with acute glyphosate poisoning and clinical symptoms, and to provide reference for the study of glyphosate toxicity. Methods: Urine samples from 5 patients with oral glyphosate poisoning admitted to the Emergency Department of Yangzhou Third Class A General Hospital from February to July 2021 were collected. Urine concentrations of GLY and AMPA were measured using derivatization gas chromatography-mass spectrometry, and analyzed based on the patient's clinical manifestations and treatment process. Results: The main symptoms of the patient after poisoning were acute gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, etc. The concentration of GLY in the patient's urine reached its maximum on the first day and gradually decreased over time. On the day of discharge, the final concentration of GLY was 10% lower than the initial concentration. At discharge, the clearance rates of GLY in cases 1, 2, 3, and 4 were 96.97%, 95.91%, 96.87% and 92.87%, respectively. Conclusion: The glyphosate has a shorter maintenance time after entering the human body; There is no correlation between the concentration of glyphosate and its metabolites admitted to the hospital, the dose of poisoning, and clinical symptoms in poisoned patients.
Assuntos
Glicina , Glifosato , Humanos , Glicina/análogos & derivados , Glicina/intoxicação , Glicina/urina , Adulto , Masculino , Cromatografia Gasosa-Espectrometria de Massas , Feminino , Herbicidas/intoxicação , Herbicidas/urina , Pessoa de Meia-IdadeRESUMO
Phosphonic acid (PA) self-assembled molecules have recently emerged as efficient hole-extraction layers (HELs) for organic solar cells (OSCs). However, the structural effects of PAs on their self-assembly behaviors on indium tin oxide (ITO) and thus photovoltaic performance remain obscure. Herein, we present a novel class of PAs, namely "non-fused ring dipodal phosphonic acids" (NFR-DPAs), featuring simple and malleable non-fused ring backbones and dipodal phosphonic acid anchoring groups. The efficacy of configurational isomerism in modulating the photoelectronic properties and switching molecular orientation of PAs atop electrodes results in distinct substrate surface energy and electronic characteristics. The NFR-DPA with linear (C2h symmetry) and brominated backbone exhibits favorable face-on orientation and enhanced work function modification capability compared to its angular (C2v symmetry) and non-brominated counterparts. This makes it versatile HELs in mitigating interfacial resistance for energy barrier-free hole collection, and affording optimal active layer morphology, which results in an impressive efficiency of 19.11 % with a low voltage loss of 0.52â V for binary OSC devices and an excellent efficiency of 19.66 % for ternary OSC devices. This study presents a new dimension to design PA-based HELs for high-performance OSCs.
RESUMO
The design and development of new and efficient catalyst binder materials are important for improving cell performance in high-temperature proton-exchange membrane fuel cells (HT-PEMFCs). In this study, a series of tetrafluorophenyl phosphonic acid-based binder materials (PF-y-P, y=1, 0.83, and 0.67) with rigid structures and controllable degrees of phosphonation were prepared and used in HT-PEMFCs using the ultra-strong acid-catalyzed Friedel-Crafts reaction and the combined Michaelis-Arbuzov reaction. The samples exhibited high stability, low water uptake, superior proton conductivity, and cell performance. In addition, the oxygen mass transport properties of the PF-1-P binder were investigated using high-temperature microelectrode electrochemical testing techniques. Compared with the phosphoric acid-doped polybenzimidazole (PBI) binder, the O2 solubility of PF-1-P binder material increased by 30 % (5.36×10-6â mol cm-3) and the PF-1-P binder material exhibited better cell stability in HT-PEMFCs. After 10.5â h of discharge at a constant current of 0.12â A cm-2, the MEA voltage decreased by 7.1 % and 20.8 % in case of the PF-1-P and PBI binders, respectively.
RESUMO
Currently used organic coatings for the protection of bronze sculptures have a relatively short lifespan as a consequence of strict requirements of conservation ethics, which limit the selection of coatings. For that reason, enhancement of the corrosion protection level and durability of appropriate coatings is needed. The aim of this work was to examine if corrosion protection of bronze by selected acrylic and polyurethane coatings could be improved by using two phosphonic acids, 16-phosphonohexadecanoic acid (COOH-PA) and 12-aminododecylphosphonic acid (NH2-PA). Electrochemical measurements (linear polarization and electrochemical impedance spectroscopy, EIS) were performed to gain an insight into the influence of these phosphonic acids on the performance of the coatings during a two-week exposure to artificial acid rain and a three-month outdoor exposure. Besides the influence on the corrosion protection level, the influence on the coating adhesion was examined as well. A pull-off test clearly confirmed that the studied phosphonic acids act as adhesion promoters of both polyurethane and acrylic coatings, while electrochemical studies revealed improvements in corrosion protection levels, especially in the case of the acrylic coating Paraloid B72.
RESUMO
Area-selective atomic layer deposition (AS-ALD), which provides a bottom-up nanofabrication method with atomic-scale precision, has attracted a great deal of attention as a means to alleviate the problems associated with conventional top-down patterning. In this study, we report a methodology for achieving selective deposition of high-k dielectrics by surface modification through vapor-phase functionalization of octadecylphosphonic acid (ODPA) inhibitor molecules accompanied by post-surface treatment. A comparative evaluation of deposition selectivity of ZrO2 thin films deposited with the O2 and O3 reactants was performed on SiO2, TiN, and W substrates, and we confirmed that high enough deposition selectivity over 10 nm can be achieved even after 200 cycles of ALD with the O2 reactant. Subsequently, the electrical properties of ZrO2 films deposited with O2 and O3 reactants were investigated with and without post-deposition treatment. We successfully demonstrated that high-quality ZrO2 thin films with high dielectric constants and stable antiferroelectric properties can be produced by subjecting the films to ozone, which can eliminate carbon impurities within the films. We believe that this work provides a new strategy to achieve highly selective deposition for AS-ALD of dielectric on dielectric (DoD) applications toward upcoming bottom-up nanofabrication.
RESUMO
Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP1-NP2"; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP1-NP2") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.
RESUMO
Perovskite solar cells (PSCs) have led to distinguished achievements and become one of the state-of-the-art photovoltaic technologies. Undoubtedly, reliable preparation of large area high-quality perovskite (PVK) films with uniform optoelectronic properties has become a critical and challenging task to transition PSCs from lab to market. Here, methyldiphenylphosphine oxide (MDPPO) is employed as an additive in a PVK precursor solution to promote uniform conductivity and carrier transport of PVK films. More important, to check its compatibility with the upscaling process, the MDPPO additive strategy was further applied to doctor-blade large-area PVK films. As a result, benefit from the favorable role of MDPPO additive, the power conversion efficiencies (PCEs) of small-area PSCs reach 23.85% with superb open circuit voltage (Voc) of 1.15 V and fill factor of 81.21%, while an impressive PCE of 19.22% was achieved for the large-area PSC minimodules with active area of 61.48 cm2. Remarkably, the MDPPO modified device exhibits significantly improved operational stability, maintaining an initial efficiency of 68% even after 750 h under continuous 1-sun illumination. Our achievements will provide profound insight and further guidance for the scale-up process of PSCs from lab to large-scale modules.
RESUMO
The challenges facing metallic implants for reconstructive surgery include the leaching of toxic metal ions, a mismatch in elastic modulus between the implant and the treated tissue, and the risk of infection. These problems can be addressed by passivating the metal surface with an organic substrate and incorporating antibiotic molecules. Nitinol (NiTi), a nickel-titanium alloy, is used in devices for biomedical applications due to its shape memory and superelasticity. However, unmodified NiTi carries a risk of localized nickel toxicity and inadequately supports angiogenesis or neuroregeneration due to limited cell adhesion, poor biomineralization, and little antibacterial activity. To address these challenges, NiTi nanoparticles were modified using self-assembled phosphonic acid monolayers and functionalized with the antibiotics ceftriaxone and vancomycin via the formation of an amide. Surface modifications were monitored to confirm that phosphonic acid modifications were present on NiTi nanoparticles and 100% of the samples formed ordered films. Modifications were stable for more than a year. Elemental composition showed the presence of nickel, titanium, and phosphorus (1.9% for each sample) after surface modifications. Dynamic light scattering analysis suggested some agglomeration in solution. However, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy confirmed a particle size distribution of <100 nm, the even distribution of nanoparticles on coverslips, and elemental composition before and after cell culture. B35 neuroblastoma cells exhibited no inhibition of survival and extended neurites of approximately 100 µm in total length when cultured on coverslips coated with only poly-l-lysine or with phosphonic acid-modified NiTi, indicating high biocompatibility. The ability to support neural cell growth and differentiation makes modified NiTi nanoparticles a promising coating for surfaces in metallic bone and nerve implants. NiTi nanoparticles functionalized with ceftriaxone inhibited Escherichia coli and Serratia marcescens (SM6) at doses of 375 and 750 µg whereas the growth of Bacillus subtilis was inhibited by a dose of only 37.5 µg. NiTi-vancomycin was effective against B. subtilis at all doses even after mammalian cell culture. These are common bacteria associated with infected implants, further supporting the potential use of functionalized NiTi in coating reconstructive implants.
RESUMO
In accordance with Article 6 of Regulation (EC) No 396/2005, the applicants De Sangosse SAS and Tilco-Alginure submitted two requests, respectively, to the competent national authorities in France and Germany to modify the existing maximum residue levels (MRLs) for the active substance potassium phosphonates in various plant commodities. The data submitted in support of the requests were found to be sufficient to derive MRL proposals for the commodities under assessment. For the derived MRL on baby leaf crops, further risk manager consideration is required to decide between two MRL options. Adequate analytical methods for enforcement are available to control the residues of potassium phosphonates in accordance with the residue definition 'phosphonic acid and its salts expressed as phosphonic acid' in the commodities under consideration. Based on the risk assessment results and assuming that the existing MRLs will be amended as proposed by EFSA in previous outputs, EFSA concluded that the long-term intake of residues resulting from the existing uses of fosetyl and phosphonates (previously assessed in a joint MRL review) and new proposed uses of potassium phosphonates is unlikely to present a risk to consumer health. Considering the toxicological profile of the active substance, a short-term dietary risk assessment was not required. The risk assessment shall be regarded as indicative because some MRL proposals derived by EFSA in the framework of the MRL review according to Articles 12 and 43 of Regulation (EC) No 396/2005 require further consideration by risk managers.
RESUMO
Self-assembled molecules (SAMs) have shown great potential in the application of optoelectronic devices due to their unique molecular properties. Recently, emerging phosphonic acid-based SAMs, 2-(9Hcarbazol-9-yl)ethyl]phosphonic acid (2PACz), have successfully applied in perovskite solar cells (PSCs), organic solar cells (OSCs) and perovskite light emitting diodes (PeLEDs). More importantly, impressive results based on 2PACz SAMs are reported recently in succession. Therefore, it is essential to provide an insightful summary to promote it further development. In this review, the molecule design strategies about 2PACz are first concluded. Subsequently, this work systematically reviews the recent advances of 2PACz and its derivatives for single junction PSCs, tandem PSCs, OSCs and PeLEDs. Finally, this work concludes and discusses future challenges for 2PACz and its derivatives to further develop in optoelectronic devices.
RESUMO
The atomic-level structure and electronic properties of monazite were investigated using a first-principles method based on density functional theory (DFT). First, the geometric structure of monazite was optimized, followed by calculations of its Mulliken population, electron density, and density of states, which were subsequently analyzed. The findings of this analysis suggest that monazite is highly susceptible to cleavage along the {100} plane during crushing and grinding. When SPA was utilized as the collector, the recovery rate of monazite was higher than that when LF-P8 was used. The zeta potential and adsorption energy results indicated that the zeta potential after SPA adsorption tended towards negativity, and the adsorption energy was smaller, indicating that SPA exhibited stronger adsorption performance. LF-P8 was stably adsorbed on the monazite (100) surface via mononuclear double coordination. SPA was stably adsorbed on the surface of monazite (100) via binuclear double coordination. The results of this study provide valuable insights into the adsorption of monazite by commonly used flotation collectors. These findings are of substantial importance for future endeavors in designing flotation collectors capable of achieving selective monazite flotation.
RESUMO
Formamidinium lead iodide (FAPbI3) represents an optimal absorber material in perovskite solar cells (PSCs), while the application of FAPbI3 in inverted-structured PSCs has yet to be successful, mainly owing to its inferior film-forming on hydrophobic or defective hole-transporting substrates. Herein, we report a substantial improvement of FAPbI3-based inverted PSCs, which is realized by a multifunctional amphiphilic molecular hole-transporter, (2-(4-(10H-phenothiazin-10-yl)phenyl)-1-cyanovinyl)phosphonic acid (PTZ-CPA). The phenothiazine (PTZ) based PTZ-CPA, carrying a cyanovinyl phosphonic acid (CPA) group, forms a superwetting hole-selective underlayer that enables facile deposition of high-quality FAPbI3 thin films. Compared to a previously established carbazole-based hole-selective material (2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl)phosphonic acid (MeO-2PACz), the crystallinity of FAPbI3 is enhanced and the electronic defects are passivated by the PTZ-CPA more effectively, resulting in remarkable increases in photoluminescence quantum yield (four-fold) and Shockley-Read-Hall lifetime (eight-fold). Moreover, the PTZ-CPA shows a larger molecular dipole moment and improved energy level alignment with FAPbI3, benefiting the interfacial hole-collection. Consequently, FAPbI3-based inverted PSCs achieve an unprecedented efficiency of 25.35 % under simulated air mass 1.5 (AM1.5) sunlight. The PTZ-CPA based device shows commendable long-term stability, maintaining over 90 % of its initial efficiency after continuous operation at 40 °C for 2000â hours.
RESUMO
Aluminum (Al) placed in hot water (HW) at 90 °C is roughened due to its reaction with water, forming Al hydroxide and Al oxide, as well as releasing hydrogen gas. The roughened surface is thus hydrophilic and possesses a hugely increased surface area, which can be useful in applications requiring hydrophilicity and increased surface area, such as atmospheric moisture harvesting. On the other hand, when using HW to roughen specified areas of an Al substrate, ways to protect the other areas from HW attacks are necessary. We demonstrated that self-assembled monolayers (SAMs) of a fluorinated phosphonic acid (FPA, CF3(CF2)13(CH2)2P(=O)(OH)2) derivatized on the native oxide of an Al film protected the underneath metal substrate from HW attack. The intact wettability and surface morphology of FPA-derivatized Al subjected to HW treatment were examined using contact angle measurement, and scanning electron microscopy and atomic force microscopy, respectively. Moreover, the surface and interface chemistry of FPA-derivatized Al before and after HW treatment were investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS), verifying that the FPA SAMs were intact upon HW treatment. The ToF-SIMS results therefore explained, on the molecular level, why HW treatment did not affect the underneath Al at all. FPA derivatization is thus expected to be developed as a patterning method for the formation of hydrophilic and hydrophobic areas on Al when combined with HW treatment.
RESUMO
This study focuses on the detection of ethyl methyl phosphonic acid (EMPA), a metabolite of the banned organophosphorus nerve agent VX. We developed an electrochemical sensor utilizing the molecularly imprinted polymer (MIP) based on 4-aminobenzoic acid (4-ABA) and tetraethyl orthosilicate for the selective detection of EMPA in human plasma and urine samples. The 4-ABA@EMPA/MIP/GCE sensor was constructed by a thermal polymerization process on a glassy carbon electrode and sensor characterization was performed by cyclic voltammetry and electrochemical impedance spectroscopy. The 4-ABA@EMPA/MIP/GCE sensor demonstrated impressive linear ranges 1.0 × 10-10 M-2.5 × 10-9 M for the standard solution, 1.0 × 10-10 M-2.5 × 10-9 M for the urine sample, and 1.0 × 10-10 M-1 × 10-9 M of EMPA for the plasma sample with outstanding detection limits of 2.75 × 10-11 M (standard solution), 2.11 × 10-11 M (urine), and 2.36 × 10-11 M (plasma). The sensor exhibited excellent recovery percentages ranging from 99.86 to 101.30% in urine samples and 100.62 to 101.08% in plasma samples. These findings underscore the effectiveness of the 4-ABA@EMPA/MIP/GCE as a straightforward, highly sensitive, and selective interface capable of detecting the target analyte EMPA in human plasma and urine samples.
Assuntos
Antracenos , Impressão Molecular , Agentes Neurotóxicos , Organofosfonatos , Compostos Organotiofosforados , Humanos , Polímeros Molecularmente Impressos , Polímeros/química , Compostos Organofosforados , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Eletrodos , Limite de DetecçãoRESUMO
Manganese dioxide (MnO2) is an attractive cathode material for aqueous zinc batteries (AZBs) owing to its environmental benignity, low cost, high operating voltage, and high theoretical capacity. However, the severe dissolution of Mn2+ leads to rapid capacity decay. Herein, a self-assembled layer of amino-propyl phosphonic acid (AEPA) on the MnO2 surface, which significantly improves its cycle performance is successfully modified. Specifically, AEPA can be firmly attached to MnO2 through a strong chemical bond, forming a hydrophobic, and uniform organic coating layer with a few nanometers thickness. This coating layer can significantly inhibit the dissolution of Mn2+ by avoiding the direct contact between the electrolyte and cathode, thus enhancing the structural integrity and redox reversibility of MnO2. As a result, the MnO2@AEPA cathode achieves a high reversible capacity of 223 mAh g-1 at 0.5 A g-1 and a high capacity retention of 97% after 1700 cycles at 1 A g-1. This work provides new insights in developing stable Mn-based cathodes for aqueous batteries.
RESUMO
The properties of proton conductors determine the operating temperature range of fuel cells. Typically, phosphoric acid (PA) proton conductors exhibit excellent proton conductivity owing to their high proton dissociation and self-diffusion abilities. However, at low temperatures or high current densities, water-induced PA loss causes rapid degradation of cell performance. Maintaining efficient and stable proton conductivity within a flexible temperature range can significantly reduce the start-up temperature of PA-doped proton exchange membrane fuel cells. In this study, a dual-proton conductor composed of an organic phosphonic acid (ethylenediamine tetramethylene phosphonic acid, EDTMPA) and an inorganic PA is developed for proton exchange membranes. The proposed dual-proton conductor can operate within a flexible temperature range of 80-160 °C, benefiting from the strong interaction between EDTMPA and PA, and the enhanced proton dissociation. Fuel cells with the EDTMPA-PA dual-proton conductor showed excellent cell stability at 80 °C. In particular, under the high current density of 1.5 A cm-2 at 160 °C, the voltage decay rate of the fuel cell with the dual-proton conductor is one-thousandth of that of the fuel cell with PA-only proton conductor, indicating excellent stability.
RESUMO
Resolving the flammability of poly(L-lactic acid) (PLA) while ensuring its environmental friendliness and preserving key flame retardancy and mechanical properties represents a critical challenge. We have successfully developed a highly efficient and environmentally friendly flame retardant called Hexamethylenediamine tetramethylene phosphonic acid amine (HDME). The flame retardancy of PLA/HDME composites was significantly improved, as indicated by the LOI value of 29.1 % and UL-94 V-0 rating for PLA/3.5 HDME with only 3.5 % HDME addition. The results show a 23.4 % reduction in the total heat release (THR), a 40.0 % increase in the time to ignition (TTI), and a 21.2 % increase in the flame propagation index (FPI) compared to original PLA. Flame retardant mechanism of HDME involves the gas phase, condensed phase, and interrupted heat exchange effects. The HDME also preserved the original mechanical properties of PLA, with the elongation at break and tensile strength retention of PLA/3.5 HDME reaching 93.05 % and 89.65 %. This work provides a simple and efficient method for flame retardant modification of PLA, which can expand its application scope.
Assuntos
Ciclobutanos , Retardadores de Chama , Poliésteres , AminasRESUMO
The authors synthesized a series of functionalized diatomite-based materials and assessed their U(VI) removal performance. Phosphor-derivative-modified diatomite adsorbents were synthesized by the three-route procedures: polymerisation (DIT-Vin-PAin), covalent (DIT-Vin-PAcov), and non-covalent (DIT-PA) immobilization of the functional groups. The effects of the diatomite modification have been studied using powder XRD, solid state NMR, FTIR spectroscopy, electronic microscopy, EDX, acid-base titrations, etc. The maximum adsorption capacities of DIT-Vin-PAcov, DIT-PA, and DIT-Vin-PAin samples were 294.3 mg/g, 253.8 mg/g, and 315.9 mg/g, respectively, at pH0 = 9.0. The adsorption amount of U(VI) ions using the prepared DIT-Vin-PAin was 95.63%, which is higher compared with that of the natural diatomite at the same concentration. The adsorption studies demonstrated that the phosphonic and hydroxyl groups on the surface of the diatomite played pivotal roles in the U(VI) adsorption. The U(VI) ions as a "hard" Lewis acid could easily form bonds with the "hard" donor P-containing ligands, so that the as-prepared DIT-Vin-PAin sample had excellent adsorption properties. The monolayer adsorption of the analyte on the surface of the raw diatomite and DIT-PA was observed. It was found from the thermodynamic parameters that the uptake of the U(VI) ions by the obtained adsorbents was a spontaneous process with an endothermic effect. Findings of the present work highlight the potential for using modified diatomite as effective and reusable adsorbents for the extraction of U(VI) in the waste, river, and tap waters with satisfactory results.
RESUMO
BACKGROUND: Fagopyrum tataricum (Tartary buckwheat) is a valuable crop of great nutritional importance due to its high level of bioactive compounds. Excellent opportunities to obtain plants with the high level or the desired profile of valuable metabolites may be provided by in vitro cultures. Among known in vitro techniques, protoplast technology is an exciting tool for genetic manipulation to improve crop traits. In that context, protoplast fusion may be applied to generate hybrid cells between different species of Fagopyrum. To apply protoplast cultures to the aforementioned approaches in this research, we established the protoplast-to-plant system in Tartary buckwheat. RESULTS: In this work, cellulase and pectinase activity enabled protoplast isolation from non-morphogenic and morphogenic callus (MC), reaching, on average, 2.3 × 106 protoplasts per g of fresh weight. However, to release protoplasts from hypocotyls, the key step was the application of driselase in the enzyme mixture. We showed that colony formation could be induced after protoplast embedding in agarose compared to the alginate matrix. Protoplasts cultured in a medium based on Kao and Michayluk supplemented with phytosulfokine (PSK) rebuilt cell walls, underwent repeated mitotic division, formed aggregates, which consequently led to callus formation. Plating efficiency, expressing the number of cell aggregate formed, in 10-day-old protoplast cultures varied from 14% for morphogenic callus to 30% for hypocotyls used as a protoplast source. However plant regeneration via somatic embryogenesis and organogenesis occurred only during the cultivation of MC-derived protoplasts. CONCLUSIONS: This study demonstrated that the applied protoplast isolation approach facilitated the recovery of viable protoplasts. Moreover, the embedding of protoplasts in an agarose matrix and supplementation of a culture medium with PSK effectively stimulated cell division and further development of Tartary buckwheat protoplast cultures along with the plant regeneration. Together, these results provide the first evidence of developing a protoplast-to-plant system from the MC of Fagopyrum tataricum used as source material. These findings suggest that Tartary buckwheat's protoplast cultures have potential implications for the species' somatic hybridization and genetic improvement.