Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Pharmaceutics ; 15(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631254

RESUMO

Head and neck squamous cell carcinoma (HNSCC) still represents the world's sixth most common tumor entity, with increasing incidence. The reachability of light makes HNSCC suitable for light-based therapies such as Photochemical Internalization (PCI). The drug Bleomycin is cytotoxic and used as an anti-tumor medication. Since Bleomycin is endocytosed as a relatively large molecule, part of it is degraded in lysosomes before reaching its intracellular target. The goal of our study was to improve the intracellular availability of Bleomycin with PCI. We investigate the intracellular delivery of Bleomycin after PCI with the photosensitizer Fimaporfin. A systematic variation of Bleomycin and Fimaporfin concentrations and light irradiation led to the pronounced cell death of HNSCC cells. After optimization, the same level of tumor cell death of 75% was reached with a 20-fold lower Bleomycin concentration. This would allow treatment of HNSCC with high local tumor cell death and reduce the side effects of Bleomycin, e.g., lung fibrosis, at the same time. This demonstrates the increased efficacy of the anti-tumor medication Bleomycin in combination with PCI.

2.
Chempluschem ; 88(3): e202300021, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36779542

RESUMO

Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) made via co-condensation reactions starting from an ionosilica precursor and a porphyrin derivative were used for simultaneous BODIPY/siRNA delivery in cancer cells. We observed high BODIPY loading capacities and efficiencies of the PMINPs that are triggered by anion exchange. siRNA adsorption took place on the surface of the nanoparticles, whereas BODIPY was encapsulated within the core of the nanoparticles. BODIPY release was found to be pH-dependent. Our results indicate 94 % BODIPY release after 16 h at pH 4, whereas only 2 % were released at pH 7.4. Furthermore, complexation with siRNA against luciferase gene was observed at the surface of PMINPs and gene silencing through its delivery via photochemical internalization (PCI) mechanism was efficient in MDA-MB-231 breast cancer cells expressing stable luciferase.


Assuntos
Nanopartículas , Fotoquimioterapia , RNA Interferente Pequeno/genética , Luciferases/genética
3.
Mol Pharm ; 20(3): 1818-1841, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802639

RESUMO

Photochemical internalization (PCI) is a novel, minimally invasive drug delivery technology that facilitates the delivery of therapeutic molecules into the cytosol of cells. In this work, PCI was utilized in an effort to enhance the therapeutic index of the existing anticancer drugs as well as novel nanοformulations against breast and pancreatic cancer cells. Frontline anticancer drugs were tested with bleomycin as a benchmark PCI control; namely, three vinca alkaloids (vincristine, vinorelbine, and vinblastine), two taxanes (docetaxel and paclitaxel), two antimetabolites (gemcitabine and capecitabine), a combination of taxanes with antimetabolites, and two nano-sized formulations (squalene- and polymer-bound gemcitabine derivatives) were tested in a 3D PCI in vitro model. Strikingly, we discovered that several drug molecules exhibited remarkably augmented therapeutic activity by several orders of magnitude compared to their respective controls (without PCI technology or directly compared with bleomycin controls). Nearly all drug molecules showed enhanced therapeutic efficiency, but more interestingly, we traced several drug molecules that showed multi-fold enhancement (ranging from 5000- up to 170,000-fold enhancement) in their IC70 indices. Interestingly, PCI delivery of the vinca alkaloids (especially PCI-vincristine), and some of the nanoformulations tested, was seen to perform impressively across all of the treatment outcomes of potency, efficacy, and synergy─as determined by means of a cell viability assay. The study constitutes a systematic guide for the development of future PCI-based therapeutic modalities for precision oncology.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Alcaloides de Vinca , Humanos , Vincristina , Antimetabólitos , Linhagem Celular Tumoral , Medicina de Precisão , Antineoplásicos/uso terapêutico , Paclitaxel , Bleomicina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
4.
Carbohydr Polym ; 306: 120579, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746578

RESUMO

Aiming to engineer simple, neutral, strongly amphiphilic photoactive nanoparticles (NPs) to specifically target cancer cell lysosomes for drug transport and light-controlled release, new conjugates of ß-cyclodextrin with highly hydrophobic triphenylporphyrin bearing different alkyl chains, were synthesized. Although differently sized, all conjugates self-assemble into ~60 nm NPs in water and display similar photoactivity. The NPs target selectively the lysosomes of breast adenocarcinoma MCF-7 cells, embedding in vesicular membranes, as experiments with model liposomes indicate. Either empty or drug-loaded, the NPs lack dark toxicity for 48 h. They bind with differently structured anticancer drugs tamoxifen and gemcitabine as its N-adamantyl derivative. Red light irradiation of cells incubated with drug-loaded NPs results in major reduction of viability (>85 %) for 48 h displaying significant synergy of photo-chemotoxicity, as opposed to empty NPs, and to loaded non-irradiated NPs, in manifestation of photochemical internalization (PCI). Our approach expands the field of PCI into different small molecule chemotherapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Porfirinas , beta-Ciclodextrinas , Humanos , Porfirinas/farmacologia , Antineoplásicos/farmacologia , Gencitabina , Nanopartículas/química , beta-Ciclodextrinas/química , Portadores de Fármacos/química
5.
ACS Nano ; 17(5): 4688-4703, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853331

RESUMO

Lipid nanoparticles (LNPs) have achieved clinical success in delivering small interfering RNAs (siRNAs) for targeted gene therapy. However, endosomal escape of siRNA into the cytosol remains a fundamental challenge for LNPs. Herein, we report a strategy termed light-activated siRNA endosomal release (LASER) to address this challenge. We established a porphyrin-LNP by incorporating porphyrin-lipids into the clinically approved Onpattro formulation. The porphyrin-LNP maintained the physical properties of an LNP and generated reactive oxygen species (ROS) when irradiated with near-infrared (NIR) light. Using confocal microscopy, we revealed that porphyrin-lipids within the LNP translocate to endosomal membranes during endocytosis. The translocated porphyrin-lipids generated ROS under light irradiation and enabled LASER through endosomal membranes disruption as observed through GAL-9 recruitment and transmission electron microscopy (TEM). By establishing a quantitative confocal imaging method, we confirmed that porphyrin-LNPs can increase siRNA endosomal escape efficiency by up to 2-fold via LASER and further enhance luciferase target knockdown by 4-fold more in luciferase-transfected prostate cancer cells. Finally, we formulated porphyrin-LNPs encapsulated with gold nanoparticles (GNP) and visualized the LASER effect within prostate tumors via TEM, confirming the light-activated endosomal membrane disruption and subsequent GNP release into cytosols in vivo. Overall, porphyrin-LNPs and the LASER approach enhanced siRNA endosomal escape and significantly improved knockdown efficacy. We believe the versatility of this technology could be applied to various LNP-based RNA therapeutics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Espécies Reativas de Oxigênio , RNA Interferente Pequeno/genética , Lipídeos , Luciferases , Lasers
6.
Photodiagnosis Photodyn Ther ; 41: 103206, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36414151

RESUMO

BACKGROUND: Chemotherapy has had disappointing results in the treatment of glioblastoma multiforme (GBM). This is in part due to limited systemic drug penetration through the blood-brain barrier. This limitation can be overcome by implantation of drug-loaded hydrogels, such as fibrin glue (FG), directly into the tumor resection cavity. Photochemical internalization (PCI) has been shown to enhance the efficacy of a large number of chemotherapeutic agents, including bleomycin (BLM). This study examined the ability of loaded FG to release BLM and photosensitizer to enable PCI-induced growth inhibition of glioma spheroids in vitro. MATERIALS AND METHODS: FG layers, loaded with drug and photosensitizer, were formed in wells of a 24-well plate. Supernatants covering the FG layers were harvested after 48 h. F98 glioma spheroids were co-incubated with harvested supernatants for 24 h, followed by light exposure. Spheroid growth was monitored for an additional 14 days. RESULTS: 100% of the drug bleomycin and 90% of the photosensitizer (AlPcS2a) was released from the FG over a 48 h interval. Spheroid growth was significantly inhibited or completely suppressed by PCI of released drug and photosensitizer in many of the concentration combinations tested. PCI-induced growth inhibition increased with increasing light levels. CONCLUSIONS: The results demonstrate that both drug and photosensitizer were loaded into and released in a non-degraded form for an extended time period. The growth inhibition caused by FG-released BLM was significantly enhanced by FG-released AlPcS2a-mediated PCI.


Assuntos
Glioma , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Adesivo Tecidual de Fibrina/metabolismo , Adesivo Tecidual de Fibrina/uso terapêutico , Preparações Farmacêuticas , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Bleomicina/farmacologia , Glioma/tratamento farmacológico
7.
Front Immunol ; 14: 1278000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173721

RESUMO

Background: Immune-checkpoint inhibitors (ICIs) represent a revolution in cancer therapy and are currently implemented as standard therapy within several cancer indications. Nevertheless, the treatment is only effective in a subset of patients, and immune-related adverse effects complicate the improved survival. Adjuvant treatments that can improve the efficacy of ICIs are highly warranted, not only to increase the response rate, but also to reduce the therapeutic ICI dosage. Several treatment modalities have been suggested as ICI adjuvants including vascular targeted treatments and photodynamic therapy (PDT). Photochemical internalization (PCI) is a drug delivery system, based on PDT. PCI is long known to generate an immune response in murine models and was recently shown to enhance the cellular immune response of a vaccine in a clinical study. In the present work we evaluated PCI in combination with the vascular targeting toxin VEGF121/rGel with respect to induction of immune-mediated cell death as well as in vitro ICI enhancement. Methods: DAMP signaling post VEGF121/rGel-PCI was assessed in CT26 and MC38 murine colon cancer cell lines. Hypericin-PDT, previously indicated as an highly efficient DAMP inducer (but difficult to utilize clinically), was used as a control. ATP release was detected by a bioluminescent kit while HMGB1 and HSP90 relocalization and secretion was detected by fluorescence microscopy and western blotting. VEGF121/rGel-PCI was further investigated as an αCTLA enhancer in CT26 and MC38 tumors by measurement of tumor growth delay. CD8+ Dependent efficacy was evaluated in vivo using a CD8+ antibody. Results: VEGF121/rGel-PCI was shown to induce increased DAMP signaling as compared to PDT and VEGF121/rGel alone and the magnitude was found similar to that induced by Hypericin-PDT. Furthermore, a significant CD8+ dependent enhanced αCTLA-4 treatment effect was observed when VEGF121/rGel-PCI was used as an adjuvant in both tumor models. Conclusions: VEGF121/rGel-PCI describes a novel concept for ICI enhancement which induces a rapid CD8+ dependent tumor eradication in both CT26 and MC38 tumors. The concept is based on the combination of intracellular ROS generation and vascular targeting using a plant derived toxin and will be developed towards clinical utilization.


Assuntos
Neoplasias do Colo , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Morte Celular Imunogênica , Neoplasias do Colo/tratamento farmacológico
8.
Front Immunol ; 14: 1359973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264651

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2023.1278000.].

9.
Cancers (Basel) ; 14(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892854

RESUMO

In the race to design ever more effective therapy with ever more focused and controlled actions, nanomedicine and phototherapy seem to be two allies of choice. Indeed, the use of nanovectors making it possible to transport and protect genetic material is becoming increasingly important. In addition, the use of a method allowing the release of genetic material in a controlled way in space and time is also a strategy increasingly studied thanks to the use of lasers. In parallel, the use of interfering RNA and, more particularly, of small-interfering RNA (siRNA) has demonstrated significant potential for gene therapy. In this review, we focused on the design of the different nanovectors capable of transporting siRNAs and releasing them so that they can turn off the expression of deregulated genes in cancers through controlled photoexcitation with high precision. This mechanism, called photochemical internalization (PCI), corresponds to the lysosomal leakage of the cargo (siRNA in this case) after destabilization of the lysosomal membrane under light excitation.

10.
Oncologist ; 27(6): 430-e433, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675633

RESUMO

BACKGROUND: Photochemical internalization (PCI) is a novel technology for light-induced enhancement of the local therapeutic effect of cancer drugs, utilizing a specially designed photosensitizing molecule (fimaporfin). The photosensitizing molecules are trapped in endosomes along with macromolecules or drugs. Photoactivation of fimaporfin disrupts the endosomal membranes so that drug molecules are released from endosomes inside cells and can reach their therapeutic target in the cell cytosol or nucleus. Compared with photodynamic therapy, the main cytotoxic effect with PCI is disruption of the endosomal membrane resulting in delivery of chemotherapy drug, and not to the photochemical reactions per se. In this study we investigated the effect of PCI with gemcitabine in patients with inoperable perihilar cholangiocarcinoma (CCA). METHODS: The in vitro cytotoxic effect of PCI with gemcitabine was studied on two CCA-derived cell lines. In a fimaporfin dose-escalation phase I clinical study, we administered PCI with gemcitabine in patients with perihilar CCA (n = 16) to establish a safe and tolerable fimaporfin dose and to get early signals of efficacy. The patients enrolled in the study had tumors in which the whole length of the tumor could be illuminated from the inside of the bile duct, using an optical fiber inserted via an endoscope (Fig. 1). Fimaporfin was administered intravenously at day 0; gemcitabine (i.v.) and intraluminal biliary endoscopic laser light application on day 4; followed by standard gemcitabine/cisplatin chemotherapy. RESULTS: Preclinical experiments showed that PCI enhanced the effect of gemcitabine. In patients with CCA, PCI with gemcitabine was well tolerated with no dose-limiting toxicities, and no unexpected safety signals. Disease control was achieved in 10 of 11 evaluable patients, with a clearly superior effect in the two highest dose groups. The objective response rate (ORR) was 42%, including two complete responses, while ORR at the highest dose was 60%. Progression-free survival at 6 months was 75%, and median overall survival (mOS) was 15.4 months, with 22.8 months at the highest fimaporfin dose. CONCLUSION: Photochemical internalization with gemcitabine was found to be safe and resulted in encouraging response and survival rates in patients with unresectable perihilar CCA.


Assuntos
Colangiocarcinoma , Desoxicitidina , Fotoquimioterapia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Humanos , Fotoquimioterapia/efeitos adversos , Fotoquimioterapia/métodos , Gencitabina
11.
Pharm Res ; 39(6): 1047-1064, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35619043

RESUMO

Cytoplasmic delivery of bioactives requires the use of strategies such as active transport, electroporation, or the use of nanocarriers such as polymeric nanoparticles, liposomes, micelles, and dendrimers. It is essential to deliver bioactive molecules in the cytoplasm to achieve targeted effects by enabling organelle targeting. One of the biggest bottlenecks in the successful cytoplasmic delivery of bioactives through nanocarriers is their sequestration in the endosomes that leads to the degradation of drugs by progressing to lysosomes. In this review, we discussed mechanisms by which nanocarriers are endocytosed, the mechanisms of endosomal escape, and more importantly, the strategies that can be and have been employed for their escape from the endosomes are summarized. Like other nanocarriers, polymeric micelles can be designed for endosomal escape, however, a careful control is needed in their design to balance between the possible toxicity and endosomal escape efficiency. Keeping this in view, polyion complex micelles, and polymers that have the ability to escape the endosome, are fully discussed. Finally, we provided some perspectives for designing the polymeric micelles for efficient cytoplasmic delivery of bioactive agents through endosomal escape.


Assuntos
Micelas , Nanopartículas , Endocitose , Endossomos/metabolismo , Polímeros/metabolismo
12.
Methods Mol Biol ; 2451: 671-689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505040

RESUMO

Pathogens such as Staphylococcus aureus are able to survive in many types of host cells including phagocytes such as neutrophils and macrophages, thereby resulting in intracellular infections. Treatment of intracellular infections by conventional antimicrobials (e.g., antibiotics) is often ineffective due to low intracellular efficacy of the drugs. Thus, novel techniques which can enhance the activity of antimicrobials within cells are highly demanded. Our recent studies have shown that photochemical internalization (PCI) is a promising approach for improving the efficacy of antibiotics such as gentamicin against intracellular staphylococcal infection. In this chapter, we describe the protocols aiming to study the potential of PCI-antibiotic treatment for intracellular infections in vitro and in vivo using a RAW 264.7 cell infection model and a zebrafish embryo infection model. Proof of concept of this approach is demonstrated. The protocols are expected to prompt further development of PCI-antimicrobial based novel therapies for clinically challenging infectious diseases associated with intracellular survival of pathogens.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Peixe-Zebra
13.
Photodiagnosis Photodyn Ther ; 38: 102879, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489691

RESUMO

BACKGROUND: The process known as immunogenic cell death (ICD) is characterized by dead and dying cancer cells exposing and releasing so-called damage associated molecular patterns (DAMPs). ICD has been shown to enhance the efficacy of antigen presenting cell (APC) immunotherapy. Both anthracycline drugs such as doxorubicin (DOX), and photodynamic therapy (PDT) have been shown to be inducers of ICD. It was therefore hypothesized that combined PDT and DOX i.e. photochemical internalization of DOX (DOX-PCI) would increase ICD compared to DOX acting as a single agent. MATERIALS AND METHODS: F98 glioma cells were treated with DOX-PCI in vitro and the ICD markers HMGB1, HSP70, and HSP90 were determined by ELISA assay. Peritoneal macrophages (Ma), obtained from Fisher rats acting as APCs, were co-incubated with dead F98 glioma cells killed via DOX or DOX-PCI treatment ex vivo. The pulsed Ma (Ma DOX or Ma DOX-PCI) were used to inoculate the animals either before (preventive) or after (curative) intra-cranially implantation of the glioma cells. RESULTS: F98 cells, treated with DOX-PCI in vitro, induced a significantly higher level of HGMB1, HSP70, and HSP90 than DOX acting alone. Ma DOX-PCI inoculated animals, in both preventive and curative protocols, had a pronounced survival benefit compared to either the non-treatment or MaDOX control groups. In the curative protocol, a second booster inoculation significantly improved survival, with 60% of the animals alive at day 60. CONCLUSION: Macrophages primed with DOX-PCI treated glioma cells appeared to be highly effective as APCs and, when injected into host animals, could delay and, in some cases, prevent tumor development.


Assuntos
Glioma , Intervenção Coronária Percutânea , Fotoquimioterapia , Vacinas , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Glioma/tratamento farmacológico , Macrófagos , Fotoquimioterapia/métodos , Ratos , Vacinas/metabolismo , Vacinas/uso terapêutico
14.
Mikrochim Acta ; 189(3): 120, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201432

RESUMO

Although upconversion photodynamic therapy (PDT) has gained extensive interests in disease treatment, the intracellular migration pathway of upconversion photosensitizers and underlying cell-particle interaction mechanism is still largely unexplored. In this work photoswitchable upconversion nanoparticles (UCNPs) are reported  that can release orthogonal emissions excited by two near-infrared lights, i.e., red color of 980-nm and green color of 808-nm light excitation. Taking advantage of the dual-emissive property, a methodology based on Pearson's correlation analysis is proposed to verify the accuracy of upconversion luminescence signals under different excitation lights, which has been previously neglected. Meanwhile, we have designed a near-infrared mediated bioimaging nanoplatform that can generate reactive oxygen species (ROS) using one light and simultaneously track the location of upconversion photosensitizers using another excitation light. Our study not only depicts the migration pathway of upconversion photosensitizers, but also demonstrates the organelle escape of these upconversion nanoparticles via PCI (photochemical internalization) process. It is believed that our results inspire more efficient synergistic therapy by combining PDT with other modalities in a programmable manner.


Assuntos
Nanopartículas , Intervenção Coronária Percutânea , Fotoquimioterapia , Raios Infravermelhos , Nanopartículas/química , Fármacos Fotossensibilizantes/química
15.
Front Immunol ; 13: 815609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173729

RESUMO

Conventional vaccines are very efficient in the prevention of bacterial infections caused by extracellular pathogens due to effective stimulation of pathogen-specific antibodies. In contrast, considering that intracellular surveillance by antibodies is not possible, they are typically less effective in preventing or treating infections caused by intracellular pathogens such as Mycobacterium tuberculosis. The objective of the current study was to use so-called photochemical internalization (PCI) to deliver a live bacterial vaccine to the cytosol of antigen-presenting cells (APCs) for the purpose of stimulating major histocompatibility complex (MHC) I-restricted CD8 T-cell responses. For this purpose, Mycobacterium bovis BCG (BCG) was combined with the photosensitiser tetraphenyl chlorine disulfonate (TPCS2a) and injected intradermally into mice. TPCS2a was then activated by illumination of the injection site with light of defined energy. Antigen-specific CD4 and CD8 T-cell responses were monitored in blood, spleen, and lymph nodes at different time points thereafter using flow cytometry, ELISA and ELISPOT. Finally, APCs were infected and PCI-treated in vitro for analysis of their activation of T cells in vitro or in vivo after autologous vaccination of mice. Combination of BCG with PCI induced stronger BCG-specific CD4 and CD8 T-cell responses than treatment with BCG only or with BCG and TPCS2a without light. The overall T-cell responses were multifunctional as characterized by the production of IFN-γ, TNF-α, IL-2 and IL-17. Importantly, PCI induced cross-presentation of BCG proteins for stimulation of antigen-specific CD8 T-cells that were particularly producing IFN-γ and TNF-α. PCI further facilitated antigen presentation by causing up-regulation of MHC and co-stimulatory proteins on the surface of APCs as well as their production of TNF-α and IL-1ß in vivo. Furthermore, PCI-based vaccination also caused local inflammation at the site of vaccination, showing strong infiltration of immune cells, which could contribute to the stimulation of antigen-specific immune responses. This study is the first to demonstrate that a live microbial vaccine can be combined with a photochemical compound and light for cross presentation of antigens to CD8 T cells. Moreover, the results revealed that PCI treatment strongly improved the immunogenicity of M. bovis BCG.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Pulmão/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Vacina BCG/administração & dosagem , Apresentação Cruzada , Feminino , Inflamação/imunologia , Injeções Intradérmicas , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium bovis/imunologia , Fármacos Fotossensibilizantes/administração & dosagem , Fator de Necrose Tumoral alfa/biossíntese , Vacinação/métodos
16.
J Photochem Photobiol B ; 225: 112355, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34768077

RESUMO

The programmed death ligand-1 (PD-L1), also known as CD274 or B7-H1, is mainly expressed on cancer cells and/or immunosuppressive cells in the tumor microenvironment (TME) and plays an essential role in tumor progression and immune escape. Immune checkpoint inhibitors (ICIs) of the PD-1/PD-L1 axis have shown impressive clinical success, however, the majority of the patients do not respond to immune checkpoint therapy (ICT). Thus, to overcome ICT resistance there is a high need for potent and novel strategies that simultaneously target both tumor cells and immunosuppressive cells in the TME. In this study, we show that the intracellular light-controlled drug delivery method photochemical internalization (PCI) induce specific and strongly enhanced cytotoxic effects of the PD-L1-targeting immunotoxin, anti-PD-L1-saporin (Anti-PDL1-SAP), in the PD-L1+ triple-negative breast cancer MDA-MB-231 cell line, while no enhanced efficacy was obtained in the PD-L1 negative control cell line MDA-MB-453. Using fluorescence microscopy, we reveal that the anti-PD-L1 antibody binds to PD-L1 on the surface of the MDA-MD-231 cells and overnight accumulates in late endosomes and lysosomes where it co-localizes with the PCI photosensitizer fimaporfin (TPCS2a). Moreover, light-controlled endosomal/lysosomal escape of the anti-PD-L1 antibody and fimaporfin into the cytosol was obtained. We also confirm that the breast MDA-MB-468 and the prostate PC-3 and DU-145 cancer cell lines have subpopulations with PD-L1 expression. In addition, we show that interferon-gamma strongly induce PD-L1 expression in the per se PD-L1 negative CT26.WT cells and enhance the PD-L1 expression in MC-38 cells, of which both are murine colon cancer cell lines. In conclusion, our work provides an in vitro proof-of-concept of PCI-enhanced targeting and eradication of PD-L1 positive immunosuppressive cells. This light-controlled combinatorial strategy has a potential to advance cancer immunotherapy and should be explored in preclinical studies.


Assuntos
Antígeno B7-H1/metabolismo , Luz , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
17.
Chembiochem ; 22(23): 3277-3282, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34519410

RESUMO

Endosomal escape continues to be a limiting factor in the therapeutic use of nanomaterials. Assays to visualize endosomal escape often do not decouple the endosomal/lysosomal disruption from the release of payload into the cytosol. Here, we discuss three approaches to directly probe endosomal/lysosomal rupture: calcein dye dilution, lysosome size quantification and endosome/lysosome membrane integrity visualized with a genetically engineered cell line. We apply the three assays to endosomes/lysosomes ruptured via osmotic pressure and photochemical internalization.


Assuntos
Endossomos/química , Citosol/química , Fluoresceínas/química , Humanos , Lisossomos/química , Pressão Osmótica , Processos Fotoquímicos
18.
J Control Release ; 338: 316-329, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437914

RESUMO

Psoriasis is a chronic inflammatory skin disease that presents increased expression of tumor necrosis factor α (TNFα), a proinflammatory cytokine. The discovery of RNA interference (RNAi), mediated by short interfering RNA (siRNA), made it possible for the expression of some genes to be eliminated. However, for its application, it is necessary to use carriers that can protect siRNA and release it in the target cells. Herein, we developed a delivery system for siRNA based on hybrid polymer-lipid nanoparticles (PLNs) and combined this system with photochemical internalization (PCI), photoactivating the photosensitizer TPPS2a, to optimize the endosomal escape of TNFα siRNA in the cytoplasm, aiming to use the system as a topical formulation to treat psoriasis. The PLNs composed of 2.0% of Compritol® 888 ATO (lipid), 1.5% of poloxamer 188 and 0.1% of the cationic polymer poly(allylamine hydrochloride) showed an average nanoparticle size of 142 nm, a zeta potential of +25 mV, and the ability to efficiently coencapsulate TPPS2a and complexed siRNA. In addition, these materials did not present cellular toxicity and showed high cellular uptake. In vitro delivery studies using porcine skin model revealed that the PLNs delivered siRNA and TPPS2a into the skin. The efficacy was verified using an in vivo psoriasis animal (hairless mouse) model induced by imiquimod (IMQ) cream. The results revealed that PLN-TPPS2a-TNFα siRNA combined with PCI resulted in a decrease in the levels of TNFα, showing the efficiency of the treatment to silence this cytokine in psoriatic lesions, which was accompanied by a reduction in the redness and scaling of the mouse skin. The results showed the potential of the developed PLNs in combined silencing gene therapy and PCI for topical treatment of psoriasis.


Assuntos
Nanopartículas , Psoríase , Animais , Imiquimode , Camundongos , Psoríase/tratamento farmacológico , Psoríase/genética , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa
19.
ACS Appl Mater Interfaces ; 13(25): 29325-29339, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138540

RESUMO

We report periodic mesoporous ionosilica nanoparticles (PMINPs) as versatile nano-objects for imaging, photodynamic therapy (PDT), and efficient adsorption and delivery of small interfering RNA (siRNA) into breast cancer cells. In order to endow these nanoparticles with PDT and siRNA photochemical internalization (PCI) properties, a porphyrin derivative was integrated into the ionosilica framework. For this purpose, we synthesized PMINPs via hydrolysis-cocondensation procedures from oligosilylated ammonium and porphyrin precursors. The formation of these nano-objects was proved by transmission electron microscopy. The formed nanoparticles were then thoroughly characterized via solid-state NMR, nitrogen sorption, dynamic light scattering, and UV-vis and fluorescence spectroscopies. Our results indicate the formation of highly porous nanorods with a length of 108 ± 9 nm and a width of 54 ± 4 nm. A significant PDT effect of type I mechanism (95 ± 2.8% of cell death) was observed upon green light irradiation in nanoparticle-treated breast cancer cells, while the blue light irradiation caused a significant phototoxic effect in non-treated cells. Furthermore, PMINPs formed stable complexes with siRNA (up to 24 h), which were efficiently internalized into the cells after 4 h of incubation mostly with the energy-dependent endocytosis process. The PCI effect was obvious with green light irradiation and successfully led to 83 ± 1.1% silencing of the luciferase gene in luciferase-expressing breast cancer cells, while no gene silencing effect was observed with blue light irradiation. The present work highlights the high potential of porphyrin-doped PMINPs as multifunctional nanocarriers for nucleic acids, such as siRNA, with a triple ability to perform imaging, PDT, and PCI.


Assuntos
Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , RNA Interferente Pequeno/química , Dióxido de Silício/química , Células Cultivadas , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
20.
Lasers Med Sci ; 36(8): 1567-1571, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34185168

RESUMO

Photochemical internalization (PCI) is a modified form of photodynamic therapy (PDT) that enhances the efficacy of therapeutic agents in a site and temporal specific manner in both in vitro and in vivo publications. The purpose of the study reported here was to evaluate the benefits of a modified PCI protocol in a 3D rat glioma spheroid model. In the modified protocol, F98 glioma cells were incubated with photosensitizer (AlPcS2a) prior to spheroid generation, as opposed to post-spheroid formation photosensitizer exposure commonly used in conventional protocols. The efficacy of both bleomycin and doxorubicin PCI was evaluated using either the conventional or modified protocols. The formed spheroids were then exposed to light treatment from a diode laser, λ= 670 nm. Spheroid growth was monitored for a period of 14 days. The results of spheroid growth assays showed that there was no statistically significant difference in PCI efficacy between the conventional and modified protocols for both of the drugs tested. The direct PDT effect was significantly reduced using the modified protocol. Therefore, due to its several advantages, the modified protocol is recommended for evaluating the efficacy of PCI in tumor spheroid models.


Assuntos
Glioma , Fotoquimioterapia , Animais , Bleomicina/uso terapêutico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA