RESUMO
Acid-base dissociable antibiotic-metal complexes are known to be emerging contaminants in the aquatic environments. However, little information is available on the photochemical properties and toxicity of these complex forms. This study investigated the spectral properties of three fluoroquinolones (FQs) with and without metal ions Fe(III), Cu(II), and Al(III) in solutions under different pH conditions, as well as evaluated the changes in toxicity due to the complex with these metal ions using luminescent bacteria (vibrio fischeri). FQs showed a higher tendency to coordinate metal ions under alkaline conditions compared to neutral and acidic conditions, and the formation of complexes weakened the ultraviolet-absorbing ability of FQs. At pH = 7.0, Cu(II) quenched the fluorescence intensity of FQs. Moreover, their Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were explored, revealing that the coordination sites of Cu(II) in three FQs were situated in a bidentate manner through the oxygen atom of the deprotonated carboxyl group and cyclic carbonyl oxygen atom. This conclusion was further verified by the theory of molecular surface electrostatic potential. In addition, except for complexes of ciprofloxacin-metals, enhanced toxicity of FQs upon coordination with Fe(III) was observed, while reduced toxicity was found for coordination with Cu(II) and Al(III). These results are important for accurately evaluating the photochemical behavior and risk of these antibiotics in aquatic environments contaminated with metal ions.
Assuntos
Antibacterianos , Fluoroquinolonas , Poluentes Químicos da Água , Fluoroquinolonas/química , Fluoroquinolonas/toxicidade , Antibacterianos/química , Antibacterianos/toxicidade , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Metais/química , Metais/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Processos FotoquímicosRESUMO
Herein we report that readily available 4-alkenylisocoumarins can be regarded as potent dienolate equivalents. For example, lactol silyl ethers derived from 4-alkenylisocoumarins were selectively converted to the corresponding benzo-homophthalates through a fluoride-induced ring opening step that was followed by a ring closure through a vinylogous intramolecular aldol condensation. Likewise, nucleophilic activation of 4-alkenylisocoumarins directly yields diversely poly-substituted naphthalenes and anthracenes without formation of any regioisomer. Photophysical evaluation of a set of thus obtained 1,3-di- and 1,3,4-trisubstituted anthracenes reveals their distinct intramolecular charge transfer (ICT) character during light absorption in polar solutions and excimer emission from the solid state when a face-to-face π-stacked molecular assembly is present in the crystal packing.
RESUMO
Photophysical properties of a series of bis(arylydene)cycloalkanone dyes with various donor substituents are studied using quantum chemistry. Their capacity for luminescence and nonradiative relaxation through trans-cis isomerization is related to their structure, in particular, to the donor capacity of the substituents and the degree of conjugation due to the central cycloalkanone moiety. It is shown that cyclohexanone central moiety introduces distortions and disrupts the conjugation, thus leading to a nonmonotonic change in their properties. The increasing donor capacity of the substituents causes increase in the HOMO energy (rise in the oxidation potential) and decrease in the HOMO-LUMO gap, which results in the red shift of the absorption spectra. The ability of the excited dye to relax through fluorescence or through trans-cis isomerization is governed by the height of the barrier between the Franck-Condon and S1-S0 conical intersection regions on the potential energy surface of the lowest π-π* excited state. This barrier also correlates with the donor capacity of the substituents and the degree of conjugation between the central and donor moieties. The calculated fluorescence and trans-cis isomerization rates are in good agreement with the observed fluorescence quantum yields.
Assuntos
Corantes , Luminescência , Humanos , Relaxamento , Doadores de Tecidos , Modelos TeóricosRESUMO
Arsenic (As) presents high toxicity and strong carcinogenicity, and its health risks are regulated by its oxidation state and speciation. As can form complexes with the surface of minerals or organic matter through adsorption, affecting its toxicity and bioavailability. However, the regulation effect of the interaction of coexisting minerals and organic matter on As fate remains largely unknown. Here, we discovered that minerals (e.g., pyrite) and organic matter (e.g., alanyl glutamine, AG) can form pyrite-AG complexes, promoting As(III) oxidation under simulated solar irradiation. The formation of pyrite-AG was explored in terms of the interaction of surface oxygen atoms, electron transfer and crystal surface changes. From the perspective of atoms and molecules, pyrite-AG showed more oxygen vacancies, stronger reactive oxygen species (ROS) and a higher electron transport capacity than pyrite alone. Compared with pyrite, pyrite-AG effectively promoted the conversion of highly toxic As(III) to less toxic As(V) due to the enhanced photochemical properties. Moreover, quantification and capture of ROS confirmed that hydroxyl radicals (â¢OH) played an important role in As(III) oxidation in the pyrite-AG and As(III) system. Our results provide previously unidentified perspectives on the effects and chemical mechanisms of highly active complexes of mineral and organic matter on As fate and provide new insights into the risk assessment and control of As pollution.
RESUMO
1,3-Disubstituted N-aryl-2H-isoindoles have been synthesized by a cascade reaction of divinyl ethers, which are derived from easily available 4-bromoisocoumarins, with substituted anilines in HFIP. This cascade reaction consists of a ring-opening step through addition-elimination mechanism and the following 5-exo-tet type ring-closing step via the intramolecular nucleophilic substitution reaction. Thus obtained 2H-isoindoles have been derivatized to high-order nitrogen-containing polycycles including less accessible benzo[a]ullazines.
RESUMO
The development of industry and the increase in population have caused energy shortages and environmental pollution problems. Developing clean and storable new energy is identified as a key way to solve the problems above. Hydrogen is viewed as the most potential energy carrier due to its high calorific value and pollution-free. To convert solar energy into hydrogen energy, three nickel-based catalysts, Ni(aps)(pys)2 (aps=2-amino-2-phenylacetic salicylaldehyde) (1), Ni(ads)(pys)2 (ads=aniline salicylaldehyde, pys=pyridine-2-thiolate) (2), Ni(acs)(pys)2 (acs=aniline 5-chlorosalicylaldehyde) (3), were synthesized and explored as photocatalysts for hydrogen production. A three-component photocatalytic system for hydrogen production was constructed using target complex as photocatalyst, triethanolamine (TEOA) as electron sacrificial agent and fluorescein (FL) as photosensitizer. Under the optimum conditions, about 1504â µmol of H2 can be obtained with 25â mg catalyst 2 after 3â hours of irradiation. Finally, the hydrogen-production mechanism was discussed by experimental and theoretical methods.
RESUMO
As a new zero-dimensional carbon-based material, carbon dots (CDs) have attracted extensive attention owing to their advantages such as easy preparation and surface modification, good biocompatibility and water solubility, and tunable photochemical properties. CDs have become one of the most promising nanomaterials in the field of fluorescent sensing, bioimaging, and cancer therapy. How to precisely regulate the photochemical properties, especially the absorption, fluorescence, phosphorescence, reactive oxygen species generation, and photothermal conversion of the CDs, is the key to developing highly efficient phototheranostics for cancer treatment. Although many studies on cancer therapy using CDs have been published, no review has focused on the regulation of photochemical properties of CDs for phototheranostic applications. In this review, we summarized the strategies such as the selection of suitable carbon source, heteroatomic doping, optimum reaction conditions, surface modification, and assembly strategy to efficiently regulate the photochemical properties of the CDs to meet the requirements of different practical applications. This review might provide some valuable insight and new ideas for the development of CDs with excellent phototheranostic performance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Assuntos
Medicina de Precisão , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Nanomedicina Teranóstica/métodos , Corantes Fluorescentes/químicaRESUMO
Photodynamic therapy (PDT) is a non-invasive therapeutic modality based on the interaction between a photosensitive molecule called photosensitizer (PS) and visible light irradiation in the presence of oxygen molecule. Protoporphyrin IX (PpIX), an efficient and widely used PS, is hampered in clinical PDT by its poor water-solubility and tendency to self-aggregate. These features are strongly related to the PS hydrophilic-lipophilic balance. In order to improve the chemical properties of PpIX, a series of amphiphilic PpIX derivatives endowed with PEG550 headgroups and hydrogenated or fluorinated tails was synthetized. Hydrophilic-lipophilic balance (HLB) and log p-values were computed for all of the prepared compounds. Their photochemical properties (spectroscopic characterization, photobleaching, and singlet oxygen quantum yield) were also evaluated followed by the in vitro studies of their cellular uptake, subcellular localization, and photocytotoxicity on three tumor cell lines (4T1, scc-U8, and WiDr cell lines). The results confirm the therapeutic potency of these new PpIX derivatives. Indeed, while all of the derivatives were perfectly water soluble, some of them exhibited an improved photodynamic effect compared to the parent PpIX.
RESUMO
A review of publications on the synthesis and properties of a family of compounds called perinones was carried out. The basic molecule has been known for several decades mainly as a photostable pigment, and in recent years it has become increasingly used in organic electronics. This paper describes the methods of synthesis of low molecular weight compounds and polymers based on that molecule; the basic spectroscopic, photochemical, electrochemical and electronic properties important for the construction of organic electronics and optoelectronics devices are also discussed.
RESUMO
The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) ( 4 ), copper (II) ( 5 ), nickel (II) ( 6 ) and zinc(II) ( 7 ) phthalocyanine derivatives. These novel compounds were characterized by elemental analysis,1H,13C NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallo-phthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO)1H and13C NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6-31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.
RESUMO
Dissolved organic matter (DOM) is a ubiquitous component in effluents, DOM discharged with an effluent can affect the composition and properties of natural DOM in the receiving waters. As the photophysical and photochemical properties of effluent DOM can be changed by wastewater treatment processes, the effect of UV/chlorine treatment on the photophysical and photochemical properties of DOM was investigated using Suwannee River fulvic acid (SRFA) and Suwannee River natural organic matter (SRNOM) as representatives. Results showed that the absorbance of the two DOM was significantly decreased. The evolution trends of three representative photophysical parameters upon increase of chlorine dosages were observed. Also, a decrease in DOM aromaticity, molecular weight and electron-donating capacity was observed upon increasing chlorine dosage. Quantum yields of excited triplet state of DOM (3DOM*), singlet oxygen (1O2) and hydroxyl radicals (·OH) first decreases and then increased in the UV/chlorine systems upon increasing chlorine dosages due to the different reaction pathways of the two DOM. Moreover, 3DOM* can not only be regarded as a "controller" of other reactive intermediates, but also effectively promote the photodegradation of bezafibrate, which is classified as a persistent organic contaminant. This study gives deep insights into effects of UV/chlorine on the photophysical and photochemical properties of DOM, and is helpful for understanding the dynamic roles of DOM in the photodegradation of micropollutants.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Radical Hidroxila , Fotólise , RiosRESUMO
Quinoline Schiff bases display potential applications in optoelectronics and laser fields because of their unique optical properties that arise from extensive delocalization of the electron cloud, and a high order of non-linearity. In this context, a new class of conjugated quinoline-derivative viz. N-(quinolin-3-ylmethylene)anilines were synthesized from 2-hydroxyquinoline-3-carbaldehyde in two good yielding steps. The ability of these imines to accept an electron from a donor is denoted by their electron acceptor number and sites, which is calculated using density functional theory (DFT). The optical properties such as FT-IR, Raman, UV-VIS, and EDS spectra were calculated using TD-DFT, which also provided the energy gap, HOMO-LUMO structure. The optical properties of the synthesized imino quinolines were experimentally studied using photoluminescence and absorption spectroscopy. The properties such as Stokes shift and quantum yield were calculated using experimental data. Furthermore, the compound bearing a methyl group on the aryl ring and ZnO nanoparticles (hydrothermally synthesized) were dissolved in toluene, and optically excited with a 355 nm nanosecond laser, which produced a random laser.