Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS Lett ; 598(15): 1899-1908, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946046

RESUMO

Cyanobacteria move by gliding motility on surfaces toward the light or away from it. It is as yet unclear how the light direction is sensed on the molecular level. Diverse photoreceptor knockout mutants have a stronger response toward the light than the wild type. Either the light direction is sensed by multiple photoreceptors or by photosystems. In a study on photophobotaxis of the filamentous cyanobacterium Phormidium lacuna, broad spectral sensitivity, inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a highly sensitive response speaks for photosystems as light direction sensors. Here, it is discussed whether the photosystem theory could hold for phototaxis of other cyanobacteria.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Fototaxia , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/fisiologia , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/genética , Luz , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
2.
Protoplasma ; 260(2): 405-418, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35726036

RESUMO

Heavy waterlogging and high temperatures occur frequently in North China, yet the effects of changing environments on photochemical reactions and carbon metabolism have not been described in ginger. To determine the impact of waterlogging and high temperature on ginger, in this study, treatment groups were established as follows: (a) well-watered at ambient temperature (28 °C/22 °C) (CK), (b) well-watered at moderate temperature (33 °C/27 °C) (MT), (c) well-watered at high temperature (38 °C/32 °C) (HT), (d) waterlogging at ambient temperature (CK-WL), (e) waterlogging at moderate temperature (MT-WL), and (f) waterlogging at high temperature (HT-WL) during the rhizome growth period. We analyzed the effect of different treatments on the photosynthetic performance of ginger. Here, our results showed that waterlogging and high temperature irreversibly decreased the photosynthetic pigment content, increased the ROS content of leaves, inhibited leaf carbon assimilation and limited PSII electron transport efficiency. In addition, waterlogging in isolation and high temperature in isolation affected photosynthesis to varying degrees. Taken together, photosynthesis was more sensitive to the combined stress than to the single stresses. The results of this research provide deep insights into the response mechanisms of crop photosynthesis to different water and temperature conditions and aid the development of scientific methods for mitigating plant damage over time.


Assuntos
Complexo de Proteína do Fotossistema II , Zingiber officinale , Temperatura , Complexo de Proteína do Fotossistema II/metabolismo , Solo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Carbono
3.
J Plant Physiol ; 275: 153758, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35797828

RESUMO

High temperature is the key factor restricting the survival of tall fescue. Extreme summer hot events arise from global warming further increases this risk. As a candidate chemical priming agent previously reported, melatonin offers innovative solution to improve heat resistance of plants. However, the mechanistic insight remains ill-defined, especially in PSII photochemical reactions. In this study, we investigated the effect of melatonin priming on photosynthetic electron transport of PS II against heat stress in tall fescue. Results showed that melatonin weakened the electron transfer efficiency of PS II per light reaction center (RC) at donor-side and receptor-side, while increased the number of RC per unit cross-sectional area. The quenching analysis further revealed that the proportion of photochemical quenching, Y(II), increased by melatonin. Considering the enriched chl a and nonevent oxidative damage, we argued that inefficient but more abundant RC introduced by melatonin protected the PSII from oxidative damage under heat stress. Notably, these effects were dependent on melatonin concentration but not temperature, an optimal application concentration (50 µmol/L) was uncovered. Besides, melatonin decreased NPQ and encouraged reverse reaction of the xanthophyll cycle. We proposed that melatonin prevents the production of excessive excitation energy. In brief, melatonin plays a distinctive role in regulating photoelectric conversion of PSII of tall fescue under heat stress, increased its survival rate after heat shock.


Assuntos
Festuca , Lolium , Melatonina , Clorofila , Resposta ao Choque Térmico , Lolium/metabolismo , Melatonina/farmacologia , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
4.
Pest Manag Sci ; 73(11): 2236-2243, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28500680

RESUMO

BACKGROUND: Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth. RESULTS: A population of Palmer amaranth from Kansas (KSR) had a high level (160 - 198-fold more; SE ±21 - 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S-transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait. CONCLUSION: Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non-target-site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry.


Assuntos
Amaranthus/fisiologia , Atrazina/farmacologia , Glutationa Transferase/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Proteínas de Plantas/metabolismo , Sequência de Bases , Evolução Molecular , Kansas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA