Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 151: 106392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228035

RESUMO

Biomedical therapeutic compression textiles (TCTs) have been extensively applied in the prevention and treatment of chronic venous insufficiency of lower extremities. An efficiency and operable development strategy to achieve the morphologic control and pressure fitness of TCTs needs to be proposed to improve the medical precision and patient adherence. Therefore, the present study qualitatively explored the influencing mechanisms of each knitting variable on physical-mechanical properties and pressure behaviors of TCTs. Then constructed the quantitative models to digitalize the knitting variables for determination of yarn-machinery setting design values. The results revealed that the feeding velocity of elastic inlay yarn materials and loop size settings impacted the pressure values owing to the diversities of fabric dimensions and mechanical tensile properties, respectively. Simultaneously, the derivation ratios of proposed circumferential and pressure models evaluated by experimental validated trials were approximately 1.1% and 10.8%, respectively. This study provided the fundamental references for the design, manufacturing, and property controlling of compression textiles to improve the biomedical therapeutic effectiveness for targeted users.


Assuntos
Têxteis , Humanos , Têxteis/análise , Pressão
2.
Polymers (Basel) ; 10(5)2018 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-30966581

RESUMO

PA66/surface-modified multi-walled carbon nanotubes (MWNTs) composite fibers with a better dispersion and a stronger interfacial interaction between MWNTs and polyamide 66 (PA66) matrix were fabricated via the method of ball milling and melt-spinning. The effects of unmodified (U-MWNTs), acid-modified (MWNTs-COOH) and sodium dodecyl benzenesulfonate-modified MWNTs (MWNTs-SDBS) on the physical mechanical and thermal properties of PA66 were investigated. The results show that, the surface modified nanotube can provide homogeneous dispersion and there is a strong interfacial bonding between PA66 and MWNTs-COOH. A homogeneous dispersion of MWNTs in PA66 matrices without agglomeration is obtained by a facile ball milling method, which can increase the utilization ratio of MWNTs, reduce the required amount of MWNTs and ultimately improve the mechanical properties at a lower filler loading. The tensile strength of composite fibers reaches a maximum which respectively improved by 27% and 24% than that of PA66 fibers, when the mass fraction of MWNTs-SDBS and MWNTs-COOH is 0.1%. It is helpful for decrease the producing costa of the composite fibers. Moreover, the incorporation of MWNTs into PA66 improves the crystallizing temperature, crystallinity and thermal stability. The research shows that a novel facile method is developed for the fabrication of polymer composite fiber.

3.
Polymers (Basel) ; 9(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30965918

RESUMO

Two halogen-free inorganic flame retardants, ammonium polyphosphate (APP) and aluminum hydroxide (ATH) were added to wood-flour/polypropylene composites (WPCs) at different APP to ATH mass ratios (APP/ATH ratios), with a constant total loading of 30 wt % (30% by mass). Water soaking tests indicated a low hygroscopicity and/or solubility of ATH as compared to APP. Mechanical property tests showed that the flexural properties were not significantly affected by the APP/ATH ratio, while the impact strength appeared to increase with the increasing ATH/APP ratio. Cone calorimetry indicated that APP appeared to be more effective than ATH in reducing the peak of heat release rate (PHRR). However, when compared to the neat WPCs, total smoke release decreased with the addition of ATH but increased with the addition of APP. Noticeably, WPCs containing the combination of 20 wt % APP and 10 wt % ATH (WPC/APP-20/ATH-10) showed the lowest PHRR and total heat release in all of the formulations. WPCs combustion residues were analyzed by scanning electron microscopy, laser Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis coupled with FTIR spectroscopy was used to identify the organic volatiles that were produced during the thermal decomposition of WPCs. WPC/APP-20/ATH-10 showed the most compact carbonaceous residue with the highest degree of graphitization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA