Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Asian J Pharm Sci ; 18(6): 100854, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38089835

RESUMO

The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome-editing system has brought about a significant revolution in the realm of managing human diseases, establishing animal models, and so on. To fully harness the potential of this potent gene-editing tool, ensuring efficient and secure delivery to the target site is paramount. Consequently, developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research. In this review, we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system. We also provide an in-depth analysis of physical, viral vector, and non-viral vector delivery strategies, including plasmid-, mRNA- and protein-based approach. In addition, we illustrate the biomedical applications of the CRISPR/Cas9 system. This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system, while also delineating future directions and prospects that could inspire innovative delivery strategies. This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37895887

RESUMO

In the realm of gene therapy, a pivotal moment arrived with Paul Berg's groundbreaking identification of the first recombinant DNA in 1972. This achievement set the stage for future breakthroughs. Conditions once considered undefeatable, like melanoma, pancreatic cancer, and a host of other ailments, are now being addressed at their root cause-the genetic level. Presently, the gene therapy landscape stands adorned with 22 approved in vivo and ex vivo products, including IMLYGIC, LUXTURNA, Zolgensma, Spinraza, Patisiran, and many more. In this comprehensive exploration, we delve into a rich assortment of 16 drugs, from siRNA, miRNA, and CRISPR/Cas9 to DNA aptamers and TRAIL/APO2L, as well as 46 carriers, from AAV, AdV, LNPs, and exosomes to naked mRNA, sonoporation, and magnetofection. The article also discusses the advantages and disadvantages of each product and vector type, as well as the current challenges faced in the practical use of gene therapy and its future potential.

3.
Cytotechnology ; 74(2): 245-257, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35464169

RESUMO

Physical methods are widely utilized to deliver nucleic acids into cells such as electro-transfection or heat shock. An efficient gene electro-transfection requires the best conditions including voltage, the pulse length or number, buffer, incubation time and DNA form. In this study, the delivery of pEGFP-N1 vector into two adherent cell lines (HEK-293 T and COS-7) with the same origin (epithelial cells), and also mouse bone marrow-derived dendritic cells (DCs) was evaluated using electroporation under different conditions alone and along with heat treatment. Our data showed that the highest green fluorescent protein (GFP) expression in HEK-293 T and COS-7 cells was observed in serum-free RPMI cell culture medium as electroporation buffer, voltage (200 V), the pulse number (2), the pulse length (15 ms), the circular form of DNA, and 48 h after electro-transfection. In addition, the highest GFP expression in DCs was detected in serum-free RPMI, voltage (300 V), the pulse number (1), the pulse length (5 ms), and 48 h after electro-transfection. The use of sucrose as electroporation buffer, the pulse number (2), and the pulse length (25 ms) led to further cytotoxicity and lower transfection in HEK293T and COS-7 cells than other conditions. Moreover, the high voltage (700 V) increased the cell cytotoxicity, and decreased electro-transfection efficiency in DCs. On the other hand, the best conditions of electroporation along with heat treatment could significantly augment the transfection efficiency in all the cells. These data will be useful for gene delivery in other cells with the same properties using physical methods. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-022-00524-4.

4.
Front Genome Ed ; 4: 1037290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687779

RESUMO

Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.

5.
J Control Release ; 262: 170-181, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28710005

RESUMO

Despite the increasing number of clinical trials in gene therapy, no ideal methods still allow non-viral gene transfer in deep tissues such as the liver. We were interested in ultrasound (US)-mediated gene delivery to provide long term liver expression. For this purpose, new positively charged microbubbles were designed and complexed with pFAR4, a highly efficient small length miniplasmid DNA devoid of antibiotic resistance sequence. Sonoporation parameters, such as insonation time, acoustic pressure and duration of plasmid injection were controlled under ultrasound imaging guidance. The optimization of these various parameters was performed by bioluminescence optical imaging of luciferase reporter gene expression in the liver. Mice were injected with 50µg pFAR4-LUC either alone, or complexed with positively charged microbubbles, or co-injected with neutral MicroMarker™ microbubbles, followed by low ultrasound energy application to the liver. Injection of the pFAR4 encoding luciferase alone led to a transient transgene expression that lasted only for two days. The significant luciferase signal obtained with neutral microbubbles decreased over 2days and reached a plateau with a level around 1 log above the signal obtained with pFAR4 alone. With the newly designed positively charged microbubbles, we obtained a much stronger bioluminescence signal which increased over 2days. The 12-fold difference (p<0.05) between MicroMarker™ and our positively charged microbubbles was maintained over a period of 6months. Noteworthy, the positively charged microbubbles led to an improvement of 180-fold (p<0.001) as regard to free pDNA using unfocused ultrasound performed at clinically tolerated ultrasound amplitude. Transient liver damage was observed when using the cationic microbubble-pFAR4 complexes and the optimized sonoporation parameters. Immunohistochemistry analyses were performed to determine the nature of cells transfected. The pFAR4 miniplasmid complexed with cationic microbubbles allowed to transfect mostly hepatocytes compared to its co-injection with MicroMarker™ which transfected more preferentially endothelial cells.


Assuntos
DNA/administração & dosagem , Fígado/metabolismo , Microbolhas , Ondas Ultrassônicas , Animais , Técnicas de Transferência de Genes , Células HeLa , Humanos , Lipídeos/química , Fígado/diagnóstico por imagem , Luciferases/genética , Luciferases/metabolismo , Camundongos Endogâmicos BALB C , Plasmídeos , Transgenes , Ultrassonografia
6.
ACS Appl Mater Interfaces ; 7(42): 23387-97, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26479334

RESUMO

There is great need for the development of an efficient delivery method of macromolecules, including nucleic acids, proteins, and peptides, to cell cytoplasm without eliciting toxicity or changing cell behavior. High-aspect ratio nanomaterials have addressed many challenges present in conventional methods, such as cell membrane passage and endosomal degradation, and have shown the feasibility of efficient high-throughput macromolecule delivery with minimal perturbation of cells. This review describes the recent advances of in vitro and in vivo physical macromolecule delivery with high-aspect ratio nanostructured materials and summarizes the synthesis methods, material properties, relevant applications, and various potential directions.


Assuntos
Técnicas de Transferência de Genes , Nanoestruturas/química , Ácidos Nucleicos/química , Peptídeos/química , Endossomos/química , Humanos , Substâncias Macromoleculares , Nanoestruturas/uso terapêutico , Ácidos Nucleicos/genética , Peptídeos/genética
7.
Adv Biomed Res ; 1: 27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23210086

RESUMO

Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA