Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.236
Filtrar
1.
Eur J Sport Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992976

RESUMO

Current guidelines for prolonged altitude exposure suggest altitude levels ranging from 2000 to 2500 m to optimize an increase in total hemoglobin mass (Hbmass). However, natural low altitude locations (<2000 m) remain popular, highlighting the interest to investigate any possible benefit of low altitude camps for endurance athletes. Ten elite racewalkers (4 women and 6 men) underwent a 4-week "live high-train high" (LHTH) camp at an altitude of 1720 m (PIO2 = 121 mmHg; 20.1°C; 67% relative humidity [RH]), followed by a 3-week tapering phase (20 m; PIO2 = 150 mmHg; 28.3°C; 53% RH) in preparation for the World Athletics Championships (WC). Venous blood samples were withdrawn weekly during the entire observation period. In addition, blood volumes were determined weekly by carbon monoxide rebreathing during altitude exposure and 2 weeks after return to sea level. High-level performances were achieved at the WC (five placings among the Top 10 WC races and three all-time career personal bests). A slight but significant increase in absolute (+1.7%, p = 0.03) and relative Hbmass (+2.3%, p = 0.02) was observed after 4-week LHTH. In addition, as usually observed during LHTH protocols, weekly training distance (+28%, p = 0.02) and duration (+30%, p = 0.04) significantly increased during altitude compared to the pre-LHTH period. Therefore, although direct causation cannot be inferred, these results suggest that the combination of increased training load at low altitudes with a subsequent tapering period in a warm environment is a suitable competition-preparation strategy for elite endurance athletes.

2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000060

RESUMO

Neurodegenerative diseases (NDs) represent an unsolved problem to date with an ever-increasing population incidence. Particularly, Alzheimer's disease (AD) is the most widespread ND characterized by an accumulation of amyloid aggregates of beta-amyloid (Aß) and Tau proteins that lead to neuronal death and subsequent cognitive decline. Although neuroimaging techniques are needed to diagnose AD, the investigation of biomarkers within body fluids could provide important information on neurodegeneration. Indeed, as there is no definitive solution for AD, the monitoring of these biomarkers is of strategic importance as they are useful for both diagnosing AD and assessing the progression of the neurodegenerative state. In this context, exercise is known to be an effective non-pharmacological management strategy for AD that can counteract cognitive decline and neurodegeneration. However, investigation of the concentration of fluid biomarkers in AD patients undergoing exercise protocols has led to unclear and often conflicting results, suggesting the need to clarify the role of exercise in modulating fluid biomarkers in AD. Therefore, this critical literature review aims to gather evidence on the main fluid biomarkers of AD and the modulatory effects of exercise to clarify the efficacy and usefulness of this non-pharmacological strategy in counteracting neurodegeneration in AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Exercício Físico , Proteínas tau , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Humanos , Biomarcadores/metabolismo , Exercício Físico/fisiologia , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Terapia por Exercício/métodos
3.
Food Chem ; 459: 140356, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38981384

RESUMO

Puffiness, a physiological disorder commonly observed during the ripening and post-harvest processes of fruits in Citrus reticulata, significantly affects the quality and shelf-life of citrus fruits. The complex array of factors contributing to puffiness has obscured the current understanding of its mechanistic basis. This study examined the puffing index (PI) of 12 citrus varieties at full ripeness, focusing on the albedo layer as a crucial tissue, and investigated the correlation between cellular structural characteristics, key primary metabolites and PI. The findings revealed that the cell gap difference and the number of lipid droplets were closely linked to PI. Chlorogenic acid, Ferulic acid, D-Galacturonic acid, D-Glucuronic acid, (9Z,11E)-Octadecadienoic acid, and 9(10)-EpOME were identified as pivotal primary metabolites for rind puffing. Determination of lignin, protopectin, cellulose and lipoxygenase content further validated the relationship between cell wall, lipid metabolism and rind puffing. This study furnishes novel insights into the mechanisms underlying puffing disorder.

4.
BMJ Mil Health ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004444

RESUMO

INTRODUCTION: The present study determined the (1) day-to-day reliability of basal heart rate (HR) and HR variability (HRV) measured by the Equivital eq02+ LifeMonitor and (2) agreement of ultra short-term HRV compared with short-term HRV. METHODS: Twenty-three active-duty US Army Soldiers (5 females, 18 males) completed two experimental visits separated by >48 hours with restrictions consistent with basal monitoring (eg, exercise, dietary), with measurements after supine rest at minutes 20-21 (ultra short-term) and minutes 20-25 (short-term). HRV was assessed as the SD of R-R intervals (SDNN) and the square root of the mean squared differences between consecutive R-R intervals (RMSSD). RESULTS: The day-to-day reliability (intraclass correlation coefficient (ICC)) using linear-mixed model approach was good for HR (0.849, 95% CI: 0.689 to 0.933) and RMSSD (ICC: 0.823, 95% CI: 0.623 to 0.920). SDNN had moderate day-to-day reliability with greater variation (ICC: 0.689, 95% CI: 0.428 to 0.858). The reliability of RMSSD was slightly improved when considering the effect of respiration (ICC: 0.821, 95% CI: 0.672 to 0.944). There was no bias for HR measured for 1 min versus 5 min (p=0.511). For 1 min measurements versus 5 min, there was a very modest mean bias of -4 ms for SDNN and -1 ms for RMSSD (p≤0.023). CONCLUSION: When preceded by a 20 min stabilisation period using restrictions consistent with basal monitoring and measuring respiration, military personnel can rely on the eq02+ for basal HR and RMSSD monitoring but should be more cautious using SDNN. These data also support using ultra short-term measurements when following these procedures.

5.
J Biol Chem ; : 107574, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009345

RESUMO

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as homotetramer. We investigated whether three disease-associated mutations (F629S, C632R or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wildtype (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed, when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15 %) and R638C (∼30 %). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.

6.
J Pak Med Assoc ; 74(6): 1187-1188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948998

RESUMO

This communication defines and describes the novel concept of endocrine entropy. The authors share insights regarding the various facets of entropy in endocrine epidemiology, physiology, clinical presentation and management. The discussion opens up a new way of approaching endocrinology. Recent advances in artificial intelligence, assessment and addressal of entropy may become integral part of endocrine diagnostics and therapeutics.


Assuntos
Doenças do Sistema Endócrino , Entropia , Humanos , Doenças do Sistema Endócrino/terapia , Doenças do Sistema Endócrino/diagnóstico , Endocrinologia , Inteligência Artificial
7.
J Pak Med Assoc ; 74(6): 1187-1188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948999

RESUMO

This communication defines and describes the novel concept of endocrine entropy. The authors share insights regarding the various facets of entropy in endocrine epidemiology, physiology, clinical presentation and management. The discussion opens up a new way of approaching endocrinology. Recent advances in artificial intelligence, assessment and addressal of entropy may become integral part of endocrine diagnostics and therapeutics.


Assuntos
Doenças do Sistema Endócrino , Entropia , Humanos , Doenças do Sistema Endócrino/terapia , Doenças do Sistema Endócrino/diagnóstico , Endocrinologia , Inteligência Artificial
8.
Am J Primatol ; : e23661, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951734

RESUMO

Respiration is an invaluable signal that facilitates the real-time observation of physiological dynamics. In recent years, the advancement of noncontact measurement technology has gained momentum in capturing physiological activities in natural settings. This technology is anticipated to be found not only in humans but also in nonhuman primates. Currently, the predominant noncontact approach for nonhuman animals involves measuring vital signs through subtle variations in skin color. However, this approach is limited when addressing areas of the body covered with hair or when working in outdoor settings under fluctuating sunlight. To overcome this issue, we focused on noncontact respiratory measurements using millimeter-wave radar. Millimeter-wave radar systems, which employ millimeter waves that can penetrate animal fur and estimate respiration-derived periodic body motion, exhibit minimal susceptibility to sunlight interference. Thus, this method shows potential for conducting noncontact vital measurements in natural and outdoor settings. In this study, we validated a millimeter-wave radar methodology for capturing respiration in outdoor-housed rhesus macaques (Macaca mulatta). The radar was positioned beyond the captive enclosure and maintained at a distance >5 m from the target. Millimeter waves were transmitted to the target, and the reflected waves were used to estimate skin surface displacement associated with respiration. The results revealed periodic skin surface displacement, and the estimated respiratory rates weres within the reported range of respiratory rates for rhesus macaques. These results suggest the potential applicability of millimeter-wave radar for noncontact respiration monitoring in outdoor-living macaques without anesthesia or immobilization. The continued advancement of noncontact vital measurement technology will contribute to understanding primate mental and physical dynamics during their daily life.

9.
Diabetes Obes Metab ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951936

RESUMO

AIM: To perform a direct, double-blind, randomised, crossover comparison of subcutaneous and intravenous glucagon-like peptide-1 (GLP-1) in hyperglycaemic subjects with type 2 diabetes naïve to GLP-1-based therapy. MATERIALS AND METHODS: Ten fasted, hyperglycaemic subjects (1 female, age 63 ± 10 years [mean ± SD], glycated haemoglobin 73.5 ± 22.0 mmol/mol [8.9% ± 2.0%], both mean ± SD) received subcutaneous GLP-1 and intravenous saline, or intravenous GLP-1 and subcutaneous saline. Infusion rates were doubled every 120 min (1.2, 2.4, 4.8 and 9.6 pmol·kg-1·min-1 for subcutaneous, and 0.3, 0.6, 1.2 and 2.4 pmol·kg-1·min-1 for intravenous). Plasma glucose, total and intact GLP-1, insulin, C-peptide, glucagon and gastrointestinal symptoms were evaluated over 8 h. The results are presented as mean ± SEM. RESULTS: Plasma glucose decreased more with intravenous (by ~8.0 mmol/L [144 mg/dL]) than subcutaneous GLP-1 (by ~5.6 mmol/L [100 mg/dL]; p < 0.001). Plasma GLP-1 increased dose-dependently, but more with intravenous than subcutaneous for both total (∆max 154.2 ± 3.9 pmol/L vs. 85.1 ± 3.8 pmol/L; p < 0.001), and intact GLP-1 (∆max 44.2 ± 2.2 pmol/L vs. 12.8 ± 2.2 pmol/L; p < 0.001). Total and intact GLP-1 clearance was higher for subcutaneous than intravenous GLP-1 (p < 0.001 and p = 0.002, respectively). The increase in insulin secretion was greater, and glucagon was suppressed more with intravenous GLP-1 (p < 0.05 each). Gastrointestinal symptoms did not differ (p > 0.05 each). CONCLUSIONS: Subcutaneous GLP-1 administration is much less efficient than intravenous GLP-1 in lowering fasting plasma glucose, with less stimulation of insulin and suppression of glucagon, and much less bioavailability, even at fourfold higher infusion rates.

11.
iScience ; 27(6): 109798, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947509

RESUMO

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program. GSK2334470 (GSK), a dual PDPK1/SGK1 inhibitor, effectively mitigated the HS-induced enhancement in glycolytic capacity and the overproduction of IL-17A. Therefore, administration of GSK markedly alleviated HS-exacerbated RA progression in collagen-induced arthritis (CIA) model. Collectively, our data indicate that HS consumption subverts Th17/Treg homeostasis through the PDPK1-SGK1-FoxO1 signaling, while GSK could be a viable drug against RA progression in clinical settings.

12.
iScience ; 27(6): 110064, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947514

RESUMO

Glioblastoma multiforme (GBM) is one of the most lethal brain tumors, characterized by profound heterogeneity. While single-cell transcriptomic studies have revealed extensive intra-tumor heterogeneity, shed light on intra-tumor diversity, spatial intricacies remain largely unexplored. Leveraging clinical GBM specimens, this study employs spatial transcriptomics technology to delve into gene expression heterogeneity. Our investigation unveils a significant enrichment of tissue stem cell signature in regions bordering necrosis and the peritumoral area, positively correlated with the mesenchymal subtype signature. Moreover, upregulated genes in these regions are linked with extracellular matrix (ECM)-receptor interaction, proteoglycans, as well as vascular endothelial growth factor (VEGF) and angiopoietin-Tie (ANGPT) signaling pathways. In contrast, signatures related to glycogen metabolism and oxidative phosphorylation show no relevance to pathological zoning, whereas creatine metabolism signature is notably exclusive to vascular-enriched areas. These spatial profiles not only offer valuable references but also pave the way for future in-depth functional and mechanistic investigations into GBM progression.

13.
iScience ; 27(6): 110033, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947531

RESUMO

Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.

14.
Front Netw Physiol ; 4: 1211413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948084

RESUMO

Algorithms for the detection of COVID-19 illness from wearable sensor devices tend to implicitly treat the disease as causing a stereotyped (and therefore recognizable) deviation from healthy physiology. In contrast, a substantial diversity of bodily responses to SARS-CoV-2 infection have been reported in the clinical milieu. This raises the question of how to characterize the diversity of illness manifestations, and whether such characterization could reveal meaningful relationships across different illness manifestations. Here, we present a framework motivated by information theory to generate quantified maps of illness presentation, which we term "manifestations," as resolved by continuous physiological data from a wearable device (Oura Ring). We test this framework on five physiological data streams (heart rate, heart rate variability, respiratory rate, metabolic activity, and sleep temperature) assessed at the time of reported illness onset in a previously reported COVID-19-positive cohort (N = 73). We find that the number of distinct manifestations are few in this cohort, compared to the space of all possible manifestations. In addition, manifestation frequency correlates with the rough number of symptoms reported by a given individual, over a several-day period prior to their imputed onset of illness. These findings suggest that information-theoretic approaches can be used to sort COVID-19 illness manifestations into types with real-world value. This proof of concept supports the use of information-theoretic approaches to map illness manifestations from continuous physiological data. Such approaches could likely inform algorithm design and real-time treatment decisions if developed on large, diverse samples.

15.
16.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987333
17.
BMC Plant Biol ; 24(1): 655, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987695

RESUMO

BACKGROUND: Biochar, a carbon-rich source and natural growth stimulant, is usually produced by the pyrolysis of agricultural biomass. It is widely used to enhance plant growth, enzyme activity, and crop productivity. However, there are no conclusive studies on how different levels of biochar application influence these systems. METHODS AND RESULTS: The present study elucidated the dose-dependent effects of biochar application on the physiological performance, enzyme activity, and dry matter accumulation of tobacco plants via field experiments. In addition, transcriptome analysis was performed on 60-day-old (early growth stage) and 100-day-old (late growth stage) tobacco leaves to determine the changes in transcript levels at the molecular level under various biochar application levels (0, 600, and 1800 kg/ha). The results demonstrated that optimum biochar application enhances plant growth, regulates enzymatic activity, and promotes biomass accumulation in tobacco plants, while higher biochar doses had adverse effects. Furthermore, transcriptome analysis revealed a total of 6561 differentially expressed genes (DEGs) that were up- or down-regulated in the groupwise comparison under different treatments. KEGG pathways analysis demonstrated that carbon fixation in photosynthetic organisms (ko00710), photosynthesis (ko00195), and starch and sucrose metabolism (ko00500) pathways were significantly up-regulated under the optimal biochar dosage (600 kg/ha) and down-regulated under the higher biochar dosage (1800 kg/ha). CONCLUSION: Collectively, these results indicate that biochar application at an optimal rate (600 kg/ha) could positively affect photosynthesis and carbon fixation, which in turn increased the synthesis and accumulation of sucrose and starch, thus promoting the growth and dry matter accumulation of tobacco plants. However, a higher biochar dosage (1800 kg/ha) disturbs the crucial source-sink balance of organic compounds and inhibits the growth of tobacco plants.


Assuntos
Carvão Vegetal , Perfilação da Expressão Gênica , Nicotiana , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Transcriptoma , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Fotossíntese/efeitos dos fármacos
18.
BMC Plant Biol ; 24(1): 656, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987701

RESUMO

Increased selenium (Se) content in fruits can supply Se in human body, but the effects of teas on the Se uptake in fruit trees are unknown. The effects of infusions of four teas (green, black, dark, and white) on the Se uptake of grapevine were studied to promote the Se uptake in fruit trees in this study. However, only black tea infusion increased the biomass, photosynthetic pigment content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, and soluble protein content of grapevine. Except for white tea infusion, other tea infusions also increased the catalase (CAT) activity of grapevine. Furthermore, the tea infusions increased the activities of adenosine triphosphate sulfurase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and decreased the activities of serine acetyltransferase (SAT) and selenocysteine methyltransferase (SMT). Only the dark and white tea infusions increased the shoot total Se content by 86.53% and 23.32%, respectively (compared with the control), and also increased the shoot inorganic Se content and shoot organic Se content. Notably, four tea infusions decreased the organic Se proportion and increased the inorganic Se proportion in grapevine. Correlation and grey relational analyses showed that the root total Se content, ATPS activity, and ARP activity were closely associated with the shoot total Se content. The principal component and cluster analyses also showed that the ATPS activity, APR activity, root total Se content, and shoot total Se content were classified into one category. These findings show that black tea infusion can promote grapevine growth, while dark and white tea infusions can promote the Se uptake in grapevine.


Assuntos
Selênio , Vitis , Vitis/metabolismo , Vitis/efeitos dos fármacos , Selênio/metabolismo , Chá , Camellia sinensis/metabolismo , Camellia sinensis/efeitos dos fármacos , Frutas/metabolismo , Frutas/crescimento & desenvolvimento
19.
Front Netw Physiol ; 4: 1397151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983123

RESUMO

In this study we focus on two subnetworks common in the circuitry of swim central pattern generators (CPGs) in the sea slugs, Melibe leonina and Dendronotus iris and show that they are independently capable of stably producing emergent network bursting. This observation raises the question of whether the coordination of redundant bursting mechanisms plays a role in the generation of rhythm and its regulation in the given swim CPGs. To address this question, we investigate two pairwise rhythm-generating networks and examine the properties of their fundamental components: cellular and synaptic, which are crucial for proper network assembly and its stable function. We perform a slow-fast decomposition analysis of cellular dynamics and highlight its significant bifurcations occurring in isolated and coupled neurons. A novel model for slow synapses with high filtering efficiency and temporal delay is also introduced and examined. Our findings demonstrate the existence of two modes of oscillation in bicellular rhythm-generating networks with network hysteresis: i) a half-center oscillator and ii) an excitatory-inhibitory pair. These 2-cell networks offer potential as common building blocks combined in modular organization of larger neural circuits preserving robust network hysteresis.

20.
iScience ; 27(7): 110190, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984202

RESUMO

The conserved eukaryotic functions of cell cycle genes have primarily been studied using animal/plant models and unicellular algae. Cell cycle progression and its regulatory components in red (Rhodophyta) seaweeds are poorly understood. We analyzed diurnal gene expression data to investigate the cell cycle in the red seaweed Gracilariopsis chorda. We identified cell cycle progression and transitions in G. chorda which are induced by interactions of key regulators such as E2F/DP, RBR, cyclin-dependent kinases, and cyclins from dusk to dawn. However, several typical CDK inhibitor proteins are absent in red seaweeds. Interestingly, the G1-S transition in G. chorda is controlled by delayed transcription of GINS subunit 3. We propose that the delayed S phase entry in this seaweed may have evolved to minimize DNA damage (e.g., due to UV radiation) during replication. Our results provide important insights into cell cycle-associated physiology and its molecular mechanisms in red seaweeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA