Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Econ Entomol ; 116(3): 719-725, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37171119

RESUMO

Cotton leafroll dwarf virus (CLRDV) is a yield-limiting, aphid-transmitted virus that was identified in cotton, Gossypium hirsutum L., in the United States of America in 2017. CLRDV is currently classified in the genus Polerovirus, family Solemoviridae. Although 8 species of aphids (Hemiptera: Aphididae) are reported to infest cotton, Aphis gossypii Glover is the only known vector of CLRDV to this crop. Aphis gossypii transmits CLRDV in a persistent and nonpropagative manner, but acquisition and retention times have only been partially characterized in Brazil. The main objectives of this study were to characterize the acquisition access period, the inoculation access period, and retention times for a U.S. strain of CLRDV and A. gossypii population. A sub-objective was to test the vector competence of Myzus persicae Sulzer and Aphis craccivora Koch. In our study, A. gossypii apterous and alate morphs were able to acquire CLRDV in 30 min and 24 h, inoculate CLRDV in 45 and 15 min, and retain CLRDV for 15 and 23 days, respectively. Neither M. persicae nor A. craccivora acquired or transmitted CLRDV to cotton.


Assuntos
Afídeos , Luteoviridae , Animais , Estados Unidos , Gossypium , Brasil
2.
Plant Dis ; 107(11): 3448-3456, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37081630

RESUMO

Although fungal canker diseases constitute a limiting factor to orchard productivity and longevity, little is known about the effects of temperature on spore germination and mycelial growth of the fungal causal agents. Accordingly, the germination of spores and colony growth of Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata were evaluated after incubation on 2% water agar and 4% potato dextrose agar, respectively, at 5, 10, 15, 20, 25, 30, 35, and 40°C. Temperature optima for spore germination and mycelial growth were derived from nonlinear models fitted to germination rates and colony diameter data. The optimal temperatures for spore germination of Cal. pulchella were 28.5°C for ascospores and 29.2°C for conidia. The optimal temperatures for Cyt. sorbicola conidia and E. lata ascospore germination were 25.8 and 23.1°C, respectively. The germination of ascospores and conidia of Cal. pulchella at temperatures below 15°C required an incubation time of at least 72 h. Ascospores of E. lata and conidia of Cyt. sorbicola germinated at 10°C after 36 h. The optimal temperature for colony growth of Cal. pulchella was 24.6°C, whereas it was 21.7°C for both Cyt. sorbicola and E. lata. Our study indicates that temperature requirements for basic biological functions are higher for Cal. pulchella than for Cyt. sorbicola and E. lata. The overall higher temperatures of California relative to other cherry-producing regions in the United States or worldwide could explain the prevalence of Calosphaeria canker in the state. Conversely, Cyt. sorbicola and E. lata appear better adapted to cooler temperatures.


Assuntos
Prunus avium , Temperatura , Ágar/farmacologia , Germinação , Esporos Fúngicos
3.
Fungal Genet Biol ; 163: 103744, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209959

RESUMO

Little is known about the impact of host immunity on sexual reproduction in fungal pathogens. In particular, it is unclear whether crossing requires both sexual partners to infect living plant tissues. We addressed this issue in a three-year experiment investigating different scenarios of Zymoseptoria tritici crosses according to the virulence ('vir') or avirulence ('avr') of the parents against a qualitative resistance gene. Co-inoculations ('vir × vir', 'avr × vir', 'avr × avr') and single inoculations were performed on a wheat cultivar carrying the Stb16q resistance gene (Cellule) and a susceptible cultivar (Apache), in the greenhouse. We assessed the intensity of asexual reproduction by scoring disease severity, and the intensity of sexual reproduction by counting the ascospores discharged from wheat residues. As expected, disease severity was more intense on Cellule for 'vir × vir' co-inoculations than for 'avr × vir' co-inoculations, with no disease for 'avr × avr'. However, all types of co-inoculation yielded sexual offspring, whether or not the parental strains caused plant symptoms. Parenthood was confirmed by genotyping (SSR markers), and the occurrence of crosses between (co-)inoculated and exogenous strains (other strains from the experiment, or from far away) was determined. We showed that symptomatic asexual infection was not required for a strain to participate in sexual reproduction, and deduced from this result that avirulent strains could be maintained asymptomatically "on" or "in" leaf tissues of plants carrying the corresponding resistant gene for long enough to reproduce sexually. In two of the three years, the intensity of sexual reproduction did not differ between the three types of co-inoculation in Cellule, suggesting that crosses involving avirulent strains are not anecdotal. We discuss the possible mechanisms explaining the maintenance of avirulence in Z. tritici populations and the potential impact of particular resistance deployments such as cultivar mixtures for limiting resistance breakdown.


Assuntos
Ascomicetos , Triticum , Triticum/microbiologia , Virulência/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ascomicetos/genética
4.
Phytopathology ; 110(11): 1773-1780, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32573347

RESUMO

Ergot, caused by Claviceps purpurea, is a primary disease concern in irrigated cool-season grass seed production systems of Oregon. In order to better understand the genetic diversity, population structure, and the epidemiology of C. purpurea in grasses grown for seed, 226 isolates were obtained using a hierarchical sampling strategy from two fields each of Kentucky bluegrass (n = 102) and perennial ryegrass (n = 124) and characterized using 12 microsatellite markers. A total of 194 unique multilocus genotypes (MLGs) were identified in this study. There were moderate levels of genotypic diversity (H = 3.43 to 4.23) and gene diversity (Hexp = 0.45 to 0.57) within fields. After clone correction, analysis of molecular variance revealed that 66% of the genetic variation occurred between the two C. purpurea isolates collected from the same seed head of individual plants, indicating that many of the seed heads bearing multiple sclerotia were infected by ascospores rather than conidia. However, the majority of the clonal isolates obtained in this study were collected from the same seed head (i.e., the two isolates were identical MLGs), indicating a role of conidia (honeydew) in secondary infections within seed heads. Genetic differentiation was observed between populations from different hosts (22%) but was confounded by geography. The standardized index of association ranged from 0.007 to 0.122 among the four populations, suggesting potential outcrossing and differences in the relative contribution of ascospores and conidia to ergot among the fields. The results from this study provide insights into the epidemiology of ergot in cool-season grass seed crops of Oregon.


Assuntos
Claviceps , Claviceps/genética , Genética Populacional , Oregon , Doenças das Plantas , Poaceae , Estações do Ano , Sementes
5.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126937

RESUMO

Fire blight, caused by the bacterium Erwinia amylovora, is a disease devastating the production of rosaceous crops, primarily apple and pear, with worldwide distribution. Fire blight begins in the spring when primary inoculum is produced as ooze, which consists of plant sap, E. amylovora, and exopolysaccharides. Ooze is believed to be transferred to healthy tissues by wind, rain, and insects. However, the mechanisms by which insects locate and transmit ooze are largely undocumented. The goals of this study were to investigate the biological factors affecting acquisition of E. amylovora from ooze by a model dipteran, Drosophila melanogaster, and to determine whether flies are able to mechanically transfer this bacterium after acquisition. We found that the percentage of positive flies increased as exposure time increased, but nutritional state, mating status, and sex did not significantly alter the number of positive individuals. Bacterial abundance was highly variable at all exposure times, suggesting that other biological factors play a role in acquisition. Nutritional state had a significant effect on E. amylovora abundance, and food-deprived flies had higher E. amylovora counts than satiated flies. We also demonstrated that D. melanogaster transmits E. amylovora to a selective medium surface and hypothesize that the same is possible for plant surfaces, where bacteria can persist until an opportunity to colonize the host arises. Collectively, these data suggest a more significant role for flies than previously thought in transmission of fire blight and contribute to a shift in our understanding of the E. amylovora disease cycle.IMPORTANCE A recent hypothesis proposed that dissemination of Erwinia amylovora from ooze by flies to native rosaceous trees was likely key to the life cycle of the bacterium during its evolution. Our study validates an important component of this hypothesis by showing that flies are capable of acquiring and transmitting this bacterium from ooze under various biotic conditions. Understanding how dipterans interact with ooze advances our current knowledge of its epidemiological function and provides strong evidence for an underappreciated role of flies in the disease cycle. These findings may be especially important as they pertain to shoot blight, because this stage of the disease is poorly understood and may involve a significant amount of insect activity. Broadly, this study underscores a need to consider the depth, breadth, and origin of interactions between flies and E. amylovora to better understand its epidemiology.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Erwinia amylovora/fisiologia , Doenças das Plantas/microbiologia , Animais , Feminino , Masculino , Malus/microbiologia , Pyrus/microbiologia
6.
Microb Ecol ; 77(1): 110-123, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29876608

RESUMO

This study provides empirical evidence for antagonistic density dependence mechanisms driving sexual reproduction in the wheat fungal pathogen Zymoseptoria tritici. Biparental crosses with 12 increasing inoculum concentrations, in controlled conditions, showed that sexual reproduction in Z. tritici was impacted by an Allee effect due to mate limitation and a competition with asexual multiplication for resource allocation. The highest number of ascospores discharged was reached at intermediate inoculum concentrations (from 5 × 104 conidia mL-1 to 106 conidia mL-1). Consistent with these results for controlled co-inoculation, we found that the intensity of sexual reproduction varied with both cropping period and the vertical position of the host tissues in the field, with a maximum between 25 and 35 cm above the ground. An optimal lesion density (disease severity of 30 to 45%) maximizing offspring (ascospores) number was established, and its eco-evolutionary consequences are considered here. Two ecological mechanisms may be involved: competition for resources between the two modes of reproduction (decrease in the host resources available for sexual reproduction due to their prior use in asexual multiplication), and competitive disequilibrium between the two parental isolates, due to differential interaction dynamics with the host, for example, leading to an imbalance between mating types. A conceptual model based on these results suggests that sexual reproduction plays a key role in the evolution of pathogenicity traits, including virulence and aggressiveness. Ecological knowledge about the determinants of sexual reproduction in Z. tritici may, therefore, open up new perspectives for the management of other fungal foliar pathogens with dual modes of reproduction.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Reprodução , Ascomicetos/crescimento & desenvolvimento , Evolução Molecular , Aptidão Genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/microbiologia , Virulência
7.
Evol Appl ; 11(5): 768-780, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29875818

RESUMO

The efficiency of plant resistance to fungal pathogen populations is expected to decrease over time, due to their evolution with an increase in the frequency of virulent or highly aggressive strains. This dynamics may differ depending on the scale investigated (annual or pluriannual), particularly for annual crop pathogens with both sexual and asexual reproduction cycles. We assessed this time-scale effect, by comparing aggressiveness changes in a local Zymoseptoria tritici population over an 8-month cropping season and a 6-year period of wheat monoculture. We collected two pairs of subpopulations to represent the annual and pluriannual scales: from leaf lesions at the beginning and end of a single annual epidemic and from crop debris at the beginning and end of a 6-year period. We assessed two aggressiveness traits-latent period and lesion size-on sympatric and allopatric host varieties. A trend toward decreased latent period concomitant with a significant loss of variability was established during the course of the annual epidemic, but not over the 6-year period. Furthermore, a significant cultivar effect (sympatric vs. allopatric) on the average aggressiveness of the isolates revealed host adaptation, arguing that the observed patterns could result from selection. We thus provide an experimental body of evidence of an epidemiological trade-off between the intra- and interannual scales in the evolution of aggressiveness in a local plant pathogen population. More aggressive isolates were collected from upper leaves, on which disease severity is usually lower than on the lower part of the plants left in the field as crop debris after harvest. We suggest that these isolates play little role in sexual reproduction, due to an Allee effect (difficulty finding mates at low pathogen densities), particularly as the upper parts of the plant are removed from the field, explaining the lack of transmission of increases in aggressiveness between epidemics.

8.
Phytopathology ; 104(7): 702-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24450462

RESUMO

Predicting major Fusarium head blight (FHB) epidemics allows for the judicious use of fungicides in suppressing disease development. Our objectives were to investigate the utility of boosted regression trees (BRTs) for predictive modeling of FHB epidemics in the United States, and to compare the predictive performances of the BRT models with those of logistic regression models we had developed previously. The data included 527 FHB observations from 15 states over 26 years. BRTs were fit to a training data set of 369 FHB observations, in which FHB epidemics were classified as either major (severity ≥ 10%) or non-major (severity < 10%), linked to a predictor matrix consisting of 350 weather-based variables and categorical variables for wheat type (spring or winter), presence or absence of corn residue, and cultivar resistance. Predictive performance was estimated on a test (holdout) data set consisting of the remaining 158 observations. BRTs had a misclassification rate of 0.23 on the test data, which was 31% lower than the average misclassification rate over 15 logistic regression models we had presented earlier. The strongest predictors were generally one of mean daily relative humidity, mean daily temperature, and the number of hours in which the temperature was between 9 and 30°C and relative humidity ≥ 90% simultaneously. Moreover, the predicted risk of major epidemics increased substantially when mean daily relative humidity rose above 70%, which is a lower threshold than previously modeled for most plant pathosystems. BRTs led to novel insights into the weather-epidemic relationship.


Assuntos
Fusarium/fisiologia , Modelos Estatísticos , Doenças das Plantas/estatística & dados numéricos , Triticum/microbiologia , Umidade , Modelos Logísticos , Doenças das Plantas/microbiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA