Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Ecol Evol ; 24(1): 92, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965481

RESUMO

The increasing severity and frequency of drought pose serious threats to plant species worldwide. Yet, we lack a general understanding of how various intensities of droughts affect plant traits, in particular root traits. Here, using a meta-analysis of drought experiments (997 effect sizes from 76 papers), we investigate the effects of various intensities of droughts on some of the key morphological root traits. Our results show that root length, root mean diameter, and root area decline when drought is of severe or extreme intensity, whereas severe drought increases root tissue density. These patterns are most pronounced in trees compared to other plant functional groups. Moreover, the long duration of severe drought decreases root length in grasses and root mean diameter in legumes. The decline in root length and root diameter due to severe drought in trees was independent of drought duration. Our results suggest that morphological root traits respond strongly to increasing intensity of drought, which further depends on drought duration and may vary among plant functional groups. Our meta-analysis highlights the need for future studies to consider the interactive effects of drought intensity and drought duration for a better understanding of variable plant responses to drought.


Assuntos
Secas , Raízes de Plantas , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento
2.
Ann Bot ; 133(5-6): 743-756, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38468311

RESUMO

BACKGROUND AND AIMS: Little is known about the response of ground layer plant communities to fire in Miombo ecosystems, which is a global blind spot of ecological understanding. We aimed: (1) to assess the impact of three experimentally imposed fire treatments on ground layer species composition and compare it with patterns observed for trees; and (2) to analyse the effect of fire treatments on species richness to assess how responses differ among plant functional groups. METHODS: At a 60-year-long fire experiment in Zambia, we quantified the richness and diversity of ground layer plants in terms of taxa and functional groups across three experimental fire treatments of late dry-season fire, early dry-season fire and fire exclusion. Data were collected in five repeat surveys from the onset of the wet season to the early dry season. KEY RESULTS: Of the 140 ground layer species recorded across the three treatments, fire-maintained treatments contributed most of the richness and diversity, with the least number of unique species found in the no-fire treatment. The early-fire treatment was more similar in composition to the no-fire treatment than to the late-fire treatment. C4 grass and geoxyle richness were highest in the late-fire treatment, and there were no shared sedge species between the late-fire and other treatments. At a plot level, the average richness in the late-fire treatment was twice that of the fire exclusion treatment. CONCLUSIONS: Heterogeneity in fire seasonality and intensity supports diversity of a unique flora by providing a diversity of local environments. African ecosystems face rapid expansion of land- and fire-management schemes for carbon offsetting and sequestration. We demonstrate that analyses of the impacts of such schemes predicated on the tree flora alone are highly likely to underestimate impacts on biodiversity. A research priority must be a new understanding of the Miombo ground layer flora integrated into policy and land management.


Assuntos
Biodiversidade , Ecossistema , Incêndios , Zâmbia , Plantas , Estações do Ano
3.
New Phytol ; 241(6): 2410-2422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214451

RESUMO

Uncertainty persists within trait-based ecology, partly because few studies assess multiple axes of functional variation and their effect on plant performance. For 55 species from two semiarid grasslands, we quantified: (1) covariation between economic traits of leaves and absorptive roots, (2) covariation among economic traits, plant height, leaf size, and seed mass, and (3) relationships between these traits and species' abundance. Pairs of analogous leaf and root traits were at least weakly positively correlated (e.g. specific leaf area (SLA) and specific root length (SRL)). Two pairs of such traits, N content and DMC of leaves and roots, were at least moderately correlated (r > 0.5) whether species were grouped by site, taxonomic group and growth form, or life history. Root diameter was positively correlated with seed mass for all groups of species except annuals and monocots. Species with higher leaf dry matter content (LDMC) tended to be more abundant (r = 0.63). Annuals with larger seeds were more abundant (r = 0.69). Compared with global-scale syntheses with many observations from mesic ecosystems, we observed stronger correlations between analogous leaf and root traits, weaker correlations between SLA and leaf N, and stronger correlations between SRL and root N. In dry grasslands, plant persistence may require coordination of above- and belowground traits, and dense tissues may facilitate dominance.


Assuntos
Ecossistema , Pradaria , Ecologia , Sementes , Plantas , Folhas de Planta
4.
Sci Total Environ ; 861: 160692, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36476773

RESUMO

Water infiltration in the soil is a crucial hydrological function in the land water cycle, especially in the semiarid region where water is relatively scarce. The semiarid grassland in Northern China represents the regional vegetation in the vast area of Eurasian continent and is sensitive to land use change. However, no clear patterns exist regarding the comprehensive examination of water infiltration in relation to clipping across six plant community sites. This study aimed to test the effect of clipping and plant community sites, which were dominated by Agropyron cristatum, Stipa krylovii, Leymus chinensis, Potentilla tanacetifolia, Artemisia frigida, or Lespedeza davurica, on the water infiltration rate in the semiarid grassland. Clipping significantly decreased the water initial, steady, and average infiltration rates by 39.13, 4.36, and 12.46 mm h-1, respectively, across the six plant community sites. Clipping-induced changes in the average infiltration rate positively correlated with the changes in the plant cover (r = 0.60, P < 0.01), litter mass (r = 0.53, P < 0.01), forb functional group ratio (r = 0.46, P = 0.03), and total porosity (r = 0.49, P = 0.02), and negatively with water-holding capacity (r = -0.45, P = 0.03). Further, the water infiltration rate significantly differed among the six plant community sites. The L.davurica site had the highest water initial infiltration rate with a value of 137.63 ± 17.76 mm h-1, while the L. chinensis site had the lowest rate with a value of 74.08 ± 5.26 mm h-1. Principal component analysis showed that the total porosity, litter mass, plant cover, and forb functional group ratio were the main factors affecting water infiltration rates in the control grassland. Overall, our findings suggested that local governments and herders should implement unclipping as a potential sustainable management for improving hydrological function in the semiarid grassland.


Assuntos
Pradaria , Solo , Água , Plantas , Poaceae , China , Ecossistema
5.
6.
Front Plant Sci ; 13: 941983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898216

RESUMO

Aims: Leaf chlorophyll (Chl) is a fundamental component and good proxy for plant photosynthesis. However, we know little about the large-scale patterns of leaf Chl and the relative roles of current environment changes vs. plant evolution in driving leaf Chl variations. Locations: The east to west grassland transect of the Tibetan Plateau. Methods: We performed a grassland transect over 1,600 km across the Tibetan Plateau, measuring leaf Chl among 677 site-species. Results: Leaf Chl showed a significantly spatial pattern across the grasslands in the Tibetan Plateau, decreasing with latitude but increasing with longitude. Along with environmental gradient, leaf Chl decreased with photosynthetically active radiation (PAR), but increased with water availability and soil nitrogen availability. Furthermore, leaf Chl also showed significant differences among functional groups (C4 > C3 species; legumes < non-legume species), but no difference between annual and perennial species. However, we surprisingly found that plant evolution played a dominant role in shaping leaf Chl variations when comparing the sum and individual effects of all the environmental factors above. Moreover, we revealed that leaf Chl non-linearly decreased with plant evolutionary divergence time. This well-matches the non-linearly increasing trend in PAR or decreasing trend in temperature during the geological time-scale uplift of the Tibetan Plateau. Main Conclusion: This study highlights the dominant role of plant evolution in determining leaf Chl variations across the Tibetan Plateau. Given the fundamental role of Chl for photosynthesis, these results provide new insights into reconsidering photosynthesis capacity in alpine plants and the carbon cycle in an evolutionary view.

7.
Ying Yong Sheng Tai Xue Bao ; 33(4): 981-987, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35543050

RESUMO

Potassium (K) is the second most abundant nutrient in plant leaves after nitrogen (N) and the most abundant cation in plant cells. It plays an important role in plant growth regulation, homeostasis maintenance, and stress response. Previous studies on the effects of N input on plant nutrient status mainly focus on N and phosphorus (P), but less on K and its stoichiometry. We examined the effects of N input and mowing on K content and N:K at both plant functional group and community levels. We analyzed the relative contribution of changes in functional groups and community composition to changes of community level nutrition status. The results showed that N input increased N content of each plant functional group and increased K content of rhizomatous grasses and legumes. Mowing reduced N content of rhizomatous grasses and bunchgrass, but did not affect K content and N:K of all functional groups. Nitrogen input significantly increased plant N and K contents at the community level, while mowing significantly increased plant N content. Both N input and mowing did not affect plant N:K at functional group and community levels. The contribution of nutritional changes in plant functional groups to the variation at the community level was greater than that of changes in community composition. For all the three examined nutritional traits, the contribution of nutrients at functional group level and that of community composition showed negative covariation. Our results indicated that plant N:K had high homeostasis in meadow steppe and that plants could regulate N and K balance, which was of great significance for maintaining N:K stoichiometry under the background of increasing N deposition.


Assuntos
Pradaria , Nitrogênio , China , Ecossistema , Nitrogênio/análise , Fósforo , Plantas , Poaceae , Potássio , Solo
8.
Front Plant Sci ; 13: 845813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360321

RESUMO

Nitrogen (N) is an important element for most terrestrial ecosystems; its variation among different plant organs, and allocation mechanisms are the basis for the structural stability and functional optimization of natural plant communities. The nature of spatial variations of N and its allocation mechanisms in plants in the Tibetan Plateau-known as the world's third pole-have not been reported on a large scale. In this study, we consistently investigated the N content in different organs of plants in 1564 natural community plots in Tibet Plateau, using a standard spatial-grid sampling setup. On average, the N content was estimated to be 19.21, 4.12, 1.14, and 10.86 mg g-1 in the leaf, branch, trunk, and root, respectively, with small spatial variations. Among organs in communities, leaves were the most active, and had the highest N content, independent of the spatial location; as for vegetation type, communities dominated by herbaceous plants had higher N content than those dominated by woody plants. Furthermore, the allocation of N among different plant organs was allometric, and not significantly influenced by vegetation types and environmental factors; the homeostasis of N was also not affected much by the environment, and varied among the plant organs. In addition, the N allocation strategy within Tibet Plateau for different plant organs was observed to be consistent with that in China. Our findings systematically explore for the first time, the spatial variations in N and allometric mechanisms in natural plant communities in Tibet Plateau and establish a spatial-parameters database to optimize N cycle models.

9.
Sci Total Environ ; 814: 151944, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838919

RESUMO

Water table decline is one of the most serious environmental problems in the peatland in the Qinghai-Tibetan Plateau. However, the effect of water table decline on the structure of aboveground arthropod communities is still not clear. We investigated changes in the abundance of different arthropod groups, and estimated the abundance, height, and biomass of the plant community in a soil water table reduction experiment to reveal the effect of water table decline on the arthropod community structure. The effect of water level decline on herbivorous arthropods varied according to the feeding habits. Specifically, water table decline treatment decreased the abundance of grass-preferring herbivores but increased the abundance of forb-preferring herbivores. However, the density of predators (e.g., spiders) did not change significantly. The variations in arthropod communities were correlated with the increase in forbs and leaf nitrogen content in the water table decline treatments. Our experiment demonstrated that the effect of water table decline on plant communities cascades upwardly to alter the arthropod community. Such trophic interactions should be considered in studies aimed at predicting shifts in the arthropods communities in a changing climate.


Assuntos
Artrópodes , Água Subterrânea , Animais , Ecossistema , Nutrientes , Plantas , Solo , Tibet
10.
Mol Ecol ; 30(20): 5119-5136, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402116

RESUMO

Peatlands store one-third of Earth's soil carbon, the stability of which is uncertain due to climate change-driven shifts in hydrology and vegetation, and consequent impacts on microbial communities that mediate decomposition. Peatland carbon cycling varies over steep physicochemical gradients characterizing vertical peat profiles. However, it is unclear how drought-mediated changes in plant functional groups (PFGs) and water table (WT) levels affect microbial communities at different depths. We combined a multiyear mesocosm experiment with community sequencing across a 70-cm depth gradient, to test the hypotheses that vascular PFGs (Ericaceae vs. sedges) and WT (high vs. low) structure peatland microbial communities in depth-dependent ways. Several key results emerged. (i) Both fungal and prokaryote (bacteria and archaea) community structure shifted with WT and PFG manipulation, but fungi were much more sensitive to PFG whereas prokaryotes were much more sensitive to WT. (ii) PFG effects were largely driven by Ericaceae, although sedge effects were evident in specific cases (e.g., methanotrophs). (iii) Treatment effects varied with depth: the influence of PFG was strongest in shallow peat (0-10, 10-20 cm), whereas WT effects were strongest at the surface and middle depths (0-10, 30-40 cm), and all treatment effects waned in the deepest peat (60-70 cm). Our results underline the depth-dependent and taxon-specific ways that plant communities and hydrologic variability shape peatland microbial communities, pointing to the importance of understanding how these factors integrate across soil profiles when examining peatland responses to climate change.


Assuntos
Microbiota , Microbiologia do Solo , Archaea/genética , Secas , Microbiota/genética , Solo
11.
Glob Chang Biol ; 27(20): 5198-5210, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34228871

RESUMO

Changes in ecological processes over time in ambient treatments are often larger than the responses to manipulative treatments in climate change experiments. However, the impacts of human-driven environmental changes on the stability of natural grasslands have been typically assessed by comparing differences between manipulative plots and reference plots. Little is known about whether or how ambient climate regulates the effects of manipulative treatments and their underlying mechanisms. We collected two datasets, one a 36-year long-term observational dataset from 1983 to 2018, and the other a 10-year manipulative asymmetric warming and grazing experiment using infrared heaters with moderate grazing from 2006 to 2015 in an alpine meadow on the Tibetan Plateau. The 36-year observational dataset shows that there was a nonlinear response of community stability to ambient temperature with a positive relationship between them due to an increase in ambient temperature in the first 25 years and then a decrease in ambient temperature thereafter. Warming and grazing decreased community stability with experiment duration through an increase in legume cover and a decrease in species asynchrony, which was due to the decreasing background temperature through time during the 10-year experiment period. Moreover, the temperature sensitivity of community stability was higher under the ambient treatment than under the manipulative treatments. Therefore, our results suggested that ambient climate may control the directional trend of community stability while manipulative treatments may determine the temperature sensitivity of the response of community stability to climate relative to the ambient treatment. Our study emphasizes the importance of the context dependency of the response of community stability to human-driven environmental changes.


Assuntos
Mudança Climática , Pradaria , Herbivoria , Temperatura
12.
Ecology ; 102(6): e03355, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797757

RESUMO

Anthropogenic nitrogen (N) inputs are causing large changes in ecosystems worldwide. Many previous studies have examined the impact of N on terrestrial ecosystems; however, most have added N at rates that are much higher than predicted future deposition rates. Here, we present the results from a gradient of experimental N addition (0-10 g·N·m-2 ) in a temperate grassland. After a decade of N addition, we found that all levels of N addition changed plant functional group composition, likely indicating altered function for plant communities exposed to 10 yr of N inputs. However, N addition only had weak impacts on species composition and this functional group shift was not driven by any particular species, suggesting high levels of functional redundancy among grasslands species. Adding other nutrients (P, K, and micronutrients) in combination with N caused substantially greater changes in the relative abundance of species and functional groups. Together, these results suggest that compositional change within functional groups may buffer grasslands from impacts of N deposition, but concurrent eutrophication with other elements will likely lead to substantial changes in plant composition and biomass.


Assuntos
Pradaria , Nitrogênio , Ecossistema , Nutrientes , Plantas
13.
Appl Environ Microbiol ; 87(12): e0024121, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811029

RESUMO

Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae, were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, a rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae. IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens.


Assuntos
Água Subterrânea , Magnoliopsida/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Alaska , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ciclo do Carbono , Ferro/metabolismo , Metano/metabolismo , Microbiota , Solo
14.
Sci Total Environ ; 772: 145039, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770902

RESUMO

There has been much debate on the temporal change trend and existence of a turning point in spring green-up date (GUD) of plants on the Qinghai-Tibetan Plateau (QTP). Most previous studies on the QTP used remote sensing data, which have large uncertainties. In this study, using a large amount of long-term ground observation data at 27 phenological stations across the QTP (1694 GUD records), we showed that on the whole, QTP herbaceous plant GUD insignificantly advanced during 1982-2017. Although the direction of the GUD trend did not change from 1982 to 2017, the magnitude of the advancing trend greatly weakened after 1999. According to our estimated results from 28 paired GUD time series, the overall GUD trend shifted from -2.70 days/decade during 1982-1999 to -0.56 days/decade during 2000-2017. This finding contrasts with the conclusions of previous satellite-based studies, which either reported a continuous significant advancement of GUD or a turning point in the mid-to-late 1990s. Through partial correlation analysis and partial least squares regression, we found that winter and spring air temperatures were the primary climatic factors that influenced the temporal change in GUD, and both had negative effects on GUD. The decreased GUD trend was mainly attributable to the warming slowdown in spring. On average, the spring warming rate decreased by 52.43% after 1999, whereas the winter warming rate displayed no obvious change. This study also found that the GUD of forbs showed stronger sensitivity to air temperature change than that of sedges and grasses. This indicates that forbs are more competitive in adaptation to climate warming, which might shift plant community structure and affect ecosystem service function. Moreover, the declined advancement in GUD implies that the spring phenologically driven increase in carbon uptake may have also slowed in the past two decades.


Assuntos
Mudança Climática , Ecossistema , Estações do Ano , Temperatura , Tibet
15.
Ecol Evol ; 10(16): 8793-8800, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884657

RESUMO

Seed germination plays an important role in mediating plant species composition of grassland communities under nitrogen (N) enrichment. Shifts of plant community structure with N-enhanced deposition in terrestrial ecosystems have occurred globally. Despite numerous studies about the effects of enhanced N deposition on mature plant communities, few studies have focused on seed germination. Using a laboratory experiment, we report the effects of five N concentrations, including 0, 5, 10, 20, and 40 mM N (NH4NO3) on seed germination of eight semi-arid grassland species. Results showed that low N concentrations (5- and 20-mM N) promoted mean final germination proportion of all eight species by 4.4% and 6.4%, but high concentrations (40 mM N) had no effect. The mean germination rate was decreased 2.1% and 5.1% by higher N concentration (20- and 40-mM N) levels, but germination start time showed the opposite trend, delayed by 0.7, 0.9, and 1.8 d for the 10, 20, and 40 mM N treatments. Final germination proportion, mean germination rate, and germination start time were significantly different among species in response to N concentration treatments. The final germination proportion of Allium tenuissimum and Chenopodium glaucum were suppressed by increased N concentration, whereas it increased for Potentilla bifurca, Plantago asiatica, and Setaria viridis. Our findings provide novel insights into N deposition-induced species loss based on seed germination factors in semi-arid grassland communities.

16.
Sci Total Environ ; 747: 141298, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791413

RESUMO

Mixed litter decomposition is a common phenomenon in nature and is very important for the circulation of material through an ecosystem. Different plant functional groups (PFGs) are likely to interact during decomposition. It is unclear how mixed decomposition influences the release of multiple metallic elements, and the biogeochemical circulation mechanism in the alpine ecosystem remains elusive. In this study, a two-year experiment on decomposition of mixed litter from six dominant PFGs was conducted at two elevations in an alpine timberline ecotone using the litterbag method. First, the results suggested that PFG identity had greater impacts on the release of all metallic elements than elevation. The release rates of potassium (K), calcium (Ca), magnesium (Mg) and copper (Cu) in graminoid, deciduous shrub and forb litter were significantly higher than those in evergreen conifer, evergreen shrub and mixed litter. Second, the release of metallic elements showed non-additive effects during mixed litter decomposition. K, Ca, Mg, sodium (Na), Cu, and aluminium (Al) exhibited antagonistic effects, while Fe exhibited a synergistic effect. The antagonistic effects on Na, K, Ca and Cu release increased with increasing elevation, while the antagonistic effects on Mg, Al and Mn release decreased with increasing elevation. Third, Al and Fe showed high levels of accumulation. The K release rate decreased while Al and Fe accumulation increased with plant litter upward shift. In conclusion, mixtures of PFGs inhibits the release of multiple metallic elements during litter decomposition in the alpine timberline ecotone. We speculate that an upward shift in PFGs in response to climate warming will slow the release of K and accelerate the enrichment of Fe and Al in alpine timberline ecotones.


Assuntos
Ecossistema , Solo , Clima , Folhas de Planta , Plantas
17.
Ying Yong Sheng Tai Xue Bao ; 30(9): 2992-2998, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31529874

RESUMO

Long-term overuse of grasslands results in quantitative and qualitative decline of forage yield. Nutrient supplementation is a key strategy to improve forage yield. While mounting evidence showed that nitrogen (N) supplementation can increase forage yield, little is known about its impacts on forage quality. To understand the effects of N supplementation on forage quality at the community level, we carried out a field experiment in the meadow steppe of Hulunbuir. Our results showed that N supplementation significantly increased forage yield by 23%, which was mainly due to positive responses of perennial rhizomatous grass. The yield of other plant functional groups showed neutral response to N supplementation. The concentrations of crude protein, crude fat, and crude fiber varied significantly among different plant functional groups. Nitrogen supplementation significantly enhanced the concentration of crude protein in rhizomatous grass, bunchgrass, legume, and sedge. It enhanced the content of crude fat in rhizomatous grass but with no effect on other functional groups. Nitrogen supplementation had no effect on the concentration of crude fibre in all functional groups. At the community level, N supplementation significantly increased the concentrations of crude protein and crude fat. Our results are important for understanding the responses of forage production in meadow steppe under the scenarios of N enrichment.


Assuntos
Pradaria , Nitrogênio , Poaceae , China , Fertilizantes
18.
J Environ Manage ; 251: 109589, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31546141

RESUMO

To understand the bud banks response to grazing exclusion, we conducted a demographic experiment in long-term grazing exclusion (20 year and 30 year) typical steppe. Results showed that grass functional group constituted the vast majority of the aboveground vegetation and belowground bud bank in all treatments. Long-term grazing exclusion significantly increased total aboveground biomass (2.5 and 2.6 times in 20y and 30y grazing exclusion grasslands, respectively), and decreased total stem density (31% and 37% in 20y and 30y grazing exclusion grasslands, respectively). Grazing exclusion for 20 and 30 years increased grass aboveground biomass respectively by 6.0 and 8.0 times, and decreased grass stem density by 38% and 33%. Grazing exclusion had different effects on belowground bud density of grass and forb functional group. Long-term grazing exclusion significantly increased plant buds and bud bank size (25% and 37% in 20y and 30y grazing exclusion grasslands, respectively), especially for grass functional group (49% and 95% in 20y and 30y grazing exclusion grasslands, respectively), but had no significant effects on forb bud density. Changes of aboveground community were significantly related to changes of belowground bud bank under both grazing and grazing exclusion grasslands. The bud bank density of grass functional group was significantly positive with total (R2 = 0.33, P < 0.05) and grass aboveground biomass (R2 = 0.36, P < 0.01), while negative related with total (R2 = -0.27, P < 0.05) and grass stem density (R2 = -0.22, P < 0.05). Grazed grasslands, 20y and 30y grazing exclusion grasslands all were not meristem limited and had large reserve bud banks, which would completely replace the aboveground stem population during the growing season. These findings indicate that grazing exclusion could not only improve a large bud bank for grassland restoration but also improve the dominance of grass functional group by increasing grass belowground bud banks in typical steppe community. We propose that the belowground bud bank might be a good approach to indicating potential succession direction of aboveground community.


Assuntos
Pradaria , Poaceae , Biomassa , Plantas , Estações do Ano
19.
Ecol Evol ; 9(15): 8441-8449, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410252

RESUMO

Seed germination and seedling establishment play an important role in driving the responses of plant community structure and function to global change. Nitrogen (N) deposition is one of the driving factors of global change, which often leads to a loss in species richness in grassland ecosystems. However, how seed germination responds to N addition remains unclear. A pot incubation test was conducted in a semi-arid grassland in the Mongolian Plateau, Northern China, to investigate the effect of N addition (0, 5, 10, 20, 40, and 80 g N/m2) on seed germination from May to October 2016. Twenty species germinated under all treatments; however, the responses of the 20 species to N addition were different. The densities of Stipa krylovii, Leymus chinensis, and Artemisia frigida, which are the dominant species in this temperate steppe, decreased significantly as the amount of N addition. Moreover, N addition significantly suppressed seedling densities of the community, perennial forbs, perennial grasses, and annuals and biennials. Furthermore, species richness of the community, perennial forbs, and annuals and biennials decreased sharply with increasing N addition level, but perennial grass species richness did not change. The Shannon-Wiener diversity index also decreased as the amount of N addition increased. Our results suggest that N enrichment plays an important role in the seed germination stage and decreases supplements of seedlings to adult plants. These findings may help explain the causes of species loss by atmospheric N deposition in grassland ecosystems.

20.
Ecology ; 100(9): e02812, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291467

RESUMO

Nitrogen (N) and phosphorus (P) are essential components of the basic cell structure of plants. In particular, leaf N and P concentrations and their stoichiometric relationship largely determine the photosynthesis, growth, reproduction, and ecophysiological processes of plants. As important leaf functional traits, leaf N and P concentrations and their stoichiometric relationship play vital roles in indicating plant nutrient-use strategies and their evolution in terrestrial ecosystems. They also influence physiological and ecological processes in leaves (e.g., growth rate and energy metabolism) and productivity (e.g., net primary production and net ecosystem production) at ecosystem level. However, the lack of a comprehensive data set containing paired leaf N and P concentration records has distinctly limited research on nutrient stoichiometry and leaf functional traits. Here, we provide a global database of paired records of leaf N and P concentrations. A total of 11,354 individual records were acquired spanning 1,291 sites worldwide, including 201 families, 1,265 genera, and 3,227 species. The records span a latitudinal range of 45.28 °S to 68.35 °N and a longitudinal range of 155.5 °W to 168.0 °E. The variables provided for each individual record are (1) geographical location (longitude, latitude, and altitude); (2) matched leaf N and P concentrations and N:P ratio; (3) taxonomic information (family, genera, and species); (4) life form (angiosperm/gymnosperm, monocotyledonous/dicotyledonous and woody plants/herbaceous plants; note that woody plants were further divided into coniferous, deciduous broad-leaved, and evergreen broad-leaved woody species and that herbaceous plants were further divided into annual and perennial species); (5) mean annual temperature (MAT) and mean annual precipitation (MAP); and (6) soil N and P concentrations and pH value in some records. To date, this database is the world's largest database of paired leaf N and P concentrations, which contains matched information of geographical location, environmental factors, and taxa. We believe that the database will play a fundamental and crucial part of ecological stoichiometric studies. There are no copyright restrictions. When using this database, we kindly request that you cite this article, respecting all the authors' hard work during sample collection and data compilation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA