Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999611

RESUMO

Plant water use efficiency (WUE) is a comprehensive physiological indicator of plant growth and ability to adapt to drought. However, research on the mechanisms controlling WUE during plant growth and development remains weak. Here, we studied Pinus koraiensis as a typical evergreen conifer species in Northeast China. After collecting 80 tree samples with varying diameters at breast height (DBH), we measured δ13C and δ18O as an indicator of WUE, leaf morphology (volume, dry weight, and total epidermal area), ecological stoichiometry (carbon, nitrogen, and phosphorus content), and abiotic factors (light environment, soil pH, soil water content, and soil nutrient content). Correlational analysis of these variables revealed distinct differences between smaller/younger and larger/older plants: (1) In plants with DBH less than 52 cm, δ13C was positively related to DBH, and δ18O was negatively related to DBH. Plants with DBH greater than 52 cm showed no relationship between δ13C and DBH, and δ18O was positively related to DBH. (2) In plants with DBH less than 52 cm, there was a negative correlation between δ13C and δ18O and between δ13C and leaf phosphorus content (LP), but a positive correlation between δ13C and DBH, leaf mass per area (LMA), and leaf density (LD). The slopes of DBH-δ13C, δ18O-δ13C, leaf nitrogen content (LN)-δ13C, and LMA-δ13C correlations were greater in smaller plants than large plants. (3) Structural equation modelling showed that in smaller plants, DBH had a direct positive effect on δ13C content and a direct negative effect on δ18O, and there was a direct positive effect of light environment on δ18O. In larger plants, there was a direct negative effect of light environment on δ13C and a direct positive effect of DBH on light environment, as well as a negative effect of soil nitrogen content on leaf nitrogen. In smaller plants, DBH was the most important factor influencing δ13C, followed by δ18O and soil moisture, with light and soil pH showing minimal influence. In larger plants, light environment influenced δ13C the most, followed by soil nitrogen content and soil moisture content, with leaf nitrogen and DBH contributing little. The results suggest that water use efficiency strategies of P. koraiensis vary according to growth stage, and the effects of abiotic factors and functional traits vary at different growth stages.

2.
Sci Total Environ ; 921: 171173, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401718

RESUMO

The efficiency of water use in plants, a critical ecophysiological parameter closely related to water and carbon cycles, is essential for understanding the interactions between plants and their environment. This study investigates the effects of ongoing climate change and increasing atmospheric CO2 concentration on intrinsic (stomata-based; iWUE) and evaporative (transpiration-based; eWUE) water use efficiency in oak trees along a naturally small altitudinal gradient (130-630 m a.s.l.) of Vihorlat Mountains (eastern Slovakia, Central Europe). To assess changes in iWUE and eWUE values over the past 60 years (1961-2020), stable carbon isotope ratios in latewood cellulose (δ13Ccell) of annually resolved tree rings were analyzed. Such an approach was sensitive enough to distinguish tree responses to growth environments at different altitudes. Our findings revealed a rising trend in iWUE, particularly in oak trees at low and middle altitudes. However, this increase was negligible at high altitudes. Warmer and drier conditions at lower altitudes likely led to significant stomatal closure and enhanced efficiency in photosynthetic CO2 uptake due to rising CO2 concentration. Conversely, the increasing intracellular-to-ambient CO2 ratio (Ci/Ca) at higher altitudes indicated lower efficiency in photosynthetic CO2 uptake. In contrast to iWUE, eWUE showed no increasing trends over the last 60 years. This suggests that the positive impacts of elevated CO2 concentrations and temperature on photosynthesis and stomatal closure are counteracted by the rising atmospheric vapor pressure deficit (VPD). These differences underscore the importance of the correct interpretation of stomata-based and transpiration-based WUEs and highlight the necessity of atmospheric VPD correction when applying tree-ring δ13C-derived WUE at ecosystem and global levels.


Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/farmacologia , Temperatura , Pressão de Vapor , Gases , Fotossíntese , Isótopos de Carbono/análise , Água
3.
Water Res ; 242: 120246, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348421

RESUMO

Climate warming has substantial influences on plant water-use efficiency (PWUE), which is defined as the ratio of plant CO2 uptake to water loss and is central to the cycles of carbon and water in ecosystems. However, it remains uncertain how does climate warming affect PWUE in wetland ecosystems, especially those with seasonally alternating water availability during the growing season. In this study, we used a continuous 10-year (2011-2020) eddy covariance (EC) dataset from a seasonal hydroperiod wetland coupled with a 15-year (2003-2017) satellite-based dataset (called PML-V2) and an in situ warming experiment to examine the climate warming impacts on wetland PWUE. The 10-year EC observational results revealed that rising temperatures had significant negative impacts on the interannual variations in wetland PWUE, and increased transpiration (Et) rather than changes in gross primary productivity (GPP) dominated these negative impacts. Furthermore, the 15-year satellite-based evidence confirmed that, in the study region, climate warming had significant negative consequences for the interannual variations in wetland PWUE by enhancing wetland Et. Lastly, at the leaf-scale, the light response curves of leaf photosynthesis, leaf Et, and leaf-scale PWUE indicated that wetland plants need to consume more water during the photosynthesis process under warmer conditions. These findings provide a fresh perspective on how climate warming influences carbon and water cycles in wetland ecosystems.


Assuntos
Ecossistema , Áreas Alagadas , Estações do Ano , Água , Dióxido de Carbono , Plantas , Carbono , Mudança Climática
4.
Conserv Physiol ; 10(1): coac056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966756

RESUMO

Successful conservation of threatened species and ecosystems in a rapidly changing world requires scientifically sound decision-making tools that are readily accessible to conservation practitioners. Physiological applications that examine how plants and animals interact with their environment are now widely used when planning, implementing and monitoring conservation. Among these tools, stable-isotope physiology is a potentially powerful, yet under-utilized cornerstone of current and future conservation efforts of threatened and endangered plants. We review the underlying concepts and theory of stable-isotope physiology and describe how stable-isotope applications can support plant conservation. We focus on stable isotopes of carbon, hydrogen, oxygen and nitrogen to address plant ecophysiological responses to changing environmental conditions across temporal scales from hours to centuries. We review examples from a broad range of plant taxa, life forms and habitats and provide specific examples where stable-isotope analysis can directly improve conservation, in part by helping identify resilient, locally adapted genotypes or populations. Our review aims to provide a guide for practitioners to easily access and evaluate the information that can be derived from stable-isotope signatures, their limitations and how stable isotopes can improve conservation efforts.

5.
Tree Physiol ; 42(12): 2419-2431, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35708583

RESUMO

Water use efficiency (WUE) is a key physiological trait in studying plant carbon and water relations. However, the determinants of WUE across a large geographical scale are not always clear, limiting our capacity to predict WUE in response to future global climate change. We propose that tree WUE is influenced by calcium (Ca) availability and precipitation. In addition, although it is well-known that transpiration is the major driving force for passive nutrient uptake, the linkage between these two processes has not been well-established. Because Ca uptake is an apoplastic and passive process that purely relies on transpiration, and there is no translocation once assimilated, we further developed a theoretical model to quantify the relationship between tree Ca accumulation and WUE using soil-to-plant calcium ratio (SCa/BCa) and tree WUE derived from δ13C. We tested our theoretical model and predicted relationships using three common tree species across their native habitats in Northern China, spanning 2300 km and a controlled greenhouse experiment with soil Ca concentrations manipulated. We found that tree WUE was negatively related to precipitation of the growing season (GSP) and positively with soil Ca. A multiple regression model and a path analysis suggested a higher contribution of soil Ca to WUE than GSP. As predicted by our theoretical model, we found a positive relationship between WUE and SCa/BCa across their distribution ranges in all three tree species and in the controlled experiment for one selected species. This relationship suggests a tight coupling between water and Ca uptake and the potential use of SCa/BCa to indicate WUE. A negative relationship between SCa/BCa and GSP also suggests a possible decrease in tree Ca accumulation efficiency in a drier future in Northern China.


Assuntos
Árvores , Água , Árvores/fisiologia , Água/fisiologia , Cálcio , Ecossistema , Solo , Plantas
6.
New Phytol ; 234(2): 350-352, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301718
7.
Plant J ; 103(4): 1590-1602, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32438487

RESUMO

Breeding economically important C4 crops for enhanced whole-plant water-use efficiency (WUEplant ) is needed for sustainable agriculture. WUEplant is a complex trait and an efficient phenotyping method that reports on components of WUEplant , such as intrinsic water-use efficiency (WUEi , the rate of leaf CO2 assimilation relative to water loss via stomatal conductance), is needed. In C4 plants, theoretical models suggest that leaf carbon isotope composition (δ13 C), when the efficiency of the CO2 -concentrating mechanism (leakiness, ϕ) remains constant, can be used to screen for WUEi . The limited information about how ϕ responds to water limitations confines the application of δ13 C for WUEi screening of C4 crops. The current research aimed to test the response of ϕ to short- or long-term moderate water limitations, and the relationship of δ13 C with WUEi and WUEplant , by addressing potential mesophyll CO2 conductance (gm ) and biochemical limitations in the C4 plant Sorghum bicolor. We demonstrate that gm and ϕ are not responsive to short- or long-term water limitations. Additionally, δ13 C was not correlated with gas-exchange estimates of WUEi under short- and long-term water limitations, but showed a significant negative relationship with WUEplant . The observed association between the δ13 C and WUEplant suggests an intrinsic link of δ13 C with WUEi in this C4 plant, and can potentially be used as a screening tool for WUEplant in sorghum.


Assuntos
Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Transpiração Vegetal , Sorghum/metabolismo , Água/metabolismo , Folhas de Planta/metabolismo , Solo , Xilema/metabolismo
8.
New Phytol ; 220(2): 364-365, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30238484
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA