Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949911

RESUMO

Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38629189

RESUMO

Symbiotic organisms may contribute to a host plant's success or failure to grow, its ability to maintain viable populations, and potentially, its probability of establishment and spread outside its native range. Intercellular and intracellular microbial symbionts that are asymptomatic in their plant host during some or all of their life cycle - endophytes - can form mutualistic, commensal, or pathogenic relationships, and sometimes novel associations with alien plants. Fungal endophytes are likely the most common endosymbiont infecting plants, with life-history, morphological, physiological, and plant-symbiotic traits that are distinct from other endophytic guilds. Here, we review the community dynamics of fungal endophytes during the process of plant invasion, and how their functional role may shift during the different stages of invasion: transport, introduction (colonisation), establishment, and spread. Each invasion stage presents distinct ecological filters that an alien plant must overcome to advance to the subsequent stage of invasion. Endophytes can alternately aid the host in overcoming stage-specific filters, or contribute to the barriers imposed by filters (e.g. biotic resistance), thereby affecting invasion pathways. A few fungi can be transported as seed endophytes from their native range and be vertically transmitted to future generations in the non-native range, especially in graminoids. In other plant groups, alien plants mostly acquire endophytes via horizontal transmission from the invaded plant community, and the host endophyte community is shaped by host filtering and biogeographic factors (e.g. dispersal limitation, environmental filtering). Endophytes infecting alien plants (both those transported with their host and those accumulated in the non-native range) may influence invasion success by affecting plant growth, reproduction, environmental tolerance, and pathogen and herbivory defences; however, the direction and magnitude of these effects can be contingent upon the host identity, life stage, ecological conditions, and invasion stage. This context dependence may cause endophytic fungi to shift to a non-endophytic (e.g. pathogenic) functional life stage in the same or different hosts, which can modify alien-native plant community dynamics. We conclude by identifying paths in which alien hosts can exploit the context dependency of endophyte function in novel abiotic and biotic conditions and at the different stages of invasion.

4.
Plant Commun ; : 100769, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978798

RESUMO

Plant defense responses to pathogens are induced after direct or indirect perception of effector proteins or their activity on host proteins. In fungal-plant interactions, relatively little is known about whether, in addition to avirulence effectors and immune receptors, other proteins contribute to specific recognition. The nucleotide-binding leucine-rich repeat (NLR) immune receptor Pm2a in wheat recognizes the fungal powdery mildew effector AvrPm2. We found that the predicted wheat zinc finger TaZF interacts with both the fungal avirulence protein AvrPm2 and the wheat NLR Pm2a. We further demonstrated that the virulent AvrPm2-H2 variant does not interact with TaZF. TaZF silencing in wheat resulted in a reduction but not a loss of Pm2a-mediated powdery mildew resistance. Interaction studies showed that the leucine-rich repeat domain of Pm2a is the mediator of the interaction with TaZF. TaZF recruits both Pm2a and AvrPm2 from the cytosol to the nucleus, resulting in nuclear localization of Pm2a, TaZF, and AvrPm2 in wheat. We propose that TaZF acts as a facilitator of Pm2a-dependent AvrPm2 effector recognition. Our findings highlight the importance of identifying effector host targets for characterization of NLR-mediated effector recognition.

5.
Fungal Biol ; 127(9): 1312-1320, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37821153

RESUMO

Fossil staurosporous conidia almost identical to modern conidia of Asterosporium asterospermum were found from three Central European localities ranging from the Late Oligocene (Germany) to Middle/Late Miocene (Poland). Extant A. asterospermum is strictly host-specific and found only on branches or bark of various Fagus species from Europe, Asia and North America. Conspicuous association of conidia of A. asterospermum with numerous macro- and microremains of Fagus were reported from all the localities where fossil conidia of Asterosporium were found confirming the host-specificity of fossil A. asterospermum to ancient beeches. The host-specific relationship of A. asterospermum and beech was presumably established early in the history of the Fagus genus.


Assuntos
Ascomicetos , Fagus , Fagus/microbiologia , Esporos Fúngicos , Fósseis
6.
Front Plant Sci ; 14: 1125942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925756

RESUMO

The core microbiota of plants exerts key effects on plant performance and resilience to stress. The aim of this study was to identify the core endophytic mycobiome in U. minor stems and disentangle associations between its composition and the resistance to Dutch elm disease (DED). We also defined its spatial variation within the tree and among distant tree populations. Stem samples were taken i) from different heights of the crown of a 168-year-old elm tree, ii) from adult elm trees growing in a common garden and representing a gradient of resistance to DED, and iii) from trees growing in two distant natural populations, one of them with varying degrees of vitality. Endophyte composition was profiled by high throughput sequencing of the first internal transcribed spacer region (ITS1) of the ribosomal DNA. Three families of yeasts (Buckleyzymaceae, Trichomeriaceae and Bulleraceae) were associated to DED-resistant hosts. A small proportion (10%) of endophytic OTUs was almost ubiquitous throughout the crown while tree colonization by most fungal taxa followed stochastic patterns. A clear distinction in endophyte composition was found between geographical locations. By combining all surveys, we found evidence of a U. minor core mycobiome, pervasive within the tree and ubiquitous across locations, genotypes and health status.

7.
Plant Signal Behav ; 18(1): 2180159, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36800921

RESUMO

Partial mycoheterotrophic i.e., mixotrophic, plants are the species which partially depend on mycorrhizal fungi for its nutrients. Although some of these plants are known to show plasticity in the degree of fungal dependence induced by the changes in light condition, the genetic background of this plasticity is largely unsolved. Here, we investigated the relationships between environmental conditions and nutrient sources based on 13C and 15N enrichment in mixotrophic orchid Cymbidium goeringii. We also shaded them for 2 months and evaluated the effect of light condition on the nutrient sources based on the abundance of 13C and 15N and the gene expressions by RNA-seq based de novo assembly. The shading had no effect on isotope enrichment, possibly because of the translocation of carbon and nitrogen from the storage organs. Gene expression analysis showed the upregulation of genes involved in jasmonic acid response in leaves of the shaded plants, which suggests that the jasmonic acid played an important role in regulation of degree of dependence against the mycorrhizal fungi. Our results suggest that mixotrophic plants might be controlling their dependency against the mycorrhizal fungi by a common mechanism with the autotrophic plants.


Assuntos
Micorrizas , Orchidaceae , Simbiose/genética , Micorrizas/fisiologia , Ciclopentanos/metabolismo , Orchidaceae/microbiologia , Expressão Gênica
8.
J Fungi (Basel) ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36675911

RESUMO

Plants harbor a large diversity of endophytic microbes. Meadow fescue (Festuca pratensis) is a cool-season grass known for its symbiotic relationship with the systemic and vertically-via seeds-transmitted fungal endophyte Epichloë uncinata, yet its effects on plant hormones and the microbial community is largely unexplored. Here, we sequenced the endophytic bacterial and fungal communities in the leaves and roots, analyzing phytohormone concentrations and plant performance parameters in Epichloë-symbiotic (E+) and Epichloë-free (E-) individuals of two meadow fescue cultivars. The endophytic microbial community differed between leaf and root tissues independent of Epichloë symbiosis, while the fungal community was different in the leaves of Epichloë-symbiotic and Epichloë-free plants in both cultivars. At the same time, Epichloë symbiosis decreased salicylic acid and increased auxin concentrations in leaves. Epichloë-symbiotic plants showed higher biomass and higher seed mass at the end of the season. Our results demonstrate that Epichloë symbiosis alters the leaf fungal microbiota, which coincides with changes in phytohormone concentrations, indicating that Epichloë endophytes affect both plant immune responses and other fungal endophytes. Whether the effect of Epichloë endophytes on other fungal endophytes is connected to changes in phytohormone concentrations remains to be elucidated.

9.
Methods Mol Biol ; 2605: 325-335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520401

RESUMO

Plants interact with a broad range of microorganisms, such as bacteria and fungi. In plant roots, complex microbial communities participate in plant nutrition and development as well as in the protection against stresses. The establishment of the root microbiota is a dynamic process in space and time regulated by abiotic (e.g., edaphic, climate, etc.) and biotic factors (e.g., host genotype, root exudates, etc.). In the last 20 years, the development of metabarcoding surveys, based on high-throughput next-generation sequencing methods, identified the main drivers of microbial community structuration. However, identification of plant-associated microbes by sequencing should be complemented by imaging techniques to provide information on the micrometric spatial organization and its impact on plant-fungal and fungal-fungal interactions. Laser scanning confocal microscopy can provide both types of information and is now used to investigate communities of endophytic, endomycorrhizal, and ectomycorrhizal fungi. In this chapter, we present a protocol enabling the detection of fungal individuals and communities associated to the plant root system.


Assuntos
Microbiota , Micorrizas , Humanos , Raízes de Plantas/microbiologia , Fungos/genética , Bactérias/genética , Plantas/microbiologia , Microscopia Confocal , Microbiologia do Solo
10.
Front Microbiol ; 13: 956018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118213

RESUMO

The phyllosphere is a complex habitat for diverse microbial communities. Under natural conditions, multiple interactions occur between host plants and phyllosphere resident microbes, such as bacteria, oomycetes, and fungi. Our understanding of plant associated yeasts and yeast-like fungi lags behind other classes of plant-associated microbes, largely due to a lack of yeasts associated with the model plant Arabidopsis, which could be used in experimental model systems. The yeast-like fungal species Protomyces arabidopsidicola was previously isolated from the phyllosphere of healthy wild-growing Arabidopsis, identified, and characterized. Here we explore the interaction of P. arabidopsidicola with Arabidopsis and found P. arabidopsidicola strain C29 was not pathogenic on Arabidopsis, but was able to survive in its phyllosphere environment both in controlled environment chambers in the lab and under natural field conditions. Most importantly, P. arabidopsidicola exhibited an immune priming effect on Arabidopsis, which showed enhanced disease resistance when subsequently infected with the fungal pathogen Botrytis cinerea. Activation of the mitogen-activated protein kinases (MAPK), camalexin, salicylic acid, and jasmonic acid signaling pathways, but not the auxin-signaling pathway, was associated with this priming effect, as evidenced by MAPK3/MAPK6 activation and defense marker expression. These findings demonstrate Arabidopsis immune defense priming by the naturally occurring phyllosphere resident yeast species, P. arabidopsidicola, and contribute to establishing a new interaction system for probing the genetics of Arabidopsis immunity induced by resident yeast-like fungi.

11.
Front Plant Sci ; 13: 910594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968143

RESUMO

Pathogens produce effector proteins to manipulate their hosts. While most effectors act autonomously, some fungal effectors act in pairs and rely on each other for function. During the colonization of the plant vasculature, the root-infecting fungus Fusarium oxysporum (Fo) produces 14 so-called Secreted in Xylem (SIX) effectors. Two of these effector genes, Avr2 (Six3) and Six5, form a gene pair on the pathogenicity chromosome of the tomato-infecting Fo strain. Avr2 has been shown to suppress plant defense responses and is required for full pathogenicity. Although Six5 and Avr2 together manipulate the size exclusion limit of plasmodesmata to facilitate cell-to-cell movement of Avr2, it is unclear whether Six5 has additional functions as well. To investigate the role of Six5, we generated transgenic Arabidopsis lines expressing Six5. Notably, increased susceptibility during the early stages of infection was observed in these Six5 lines, but only to Fo strains expressing Avr2 and not to wild-type Arabidopsis-infecting Fo strains lacking this effector gene. Furthermore, neither PAMP-triggered defense responses, such as ROS accumulation and callose deposition upon treatment with Flg22, necrosis and ethylene-inducing peptide 1-like protein (NLP), or chitosan, nor susceptibility to other plant pathogens, such as the bacterium Pseudomonas syringae or the fungus Verticilium dahlia, were affected by Six5 expression. Further investigation of the ability of the Avr2/Six5 effector pair to manipulate plasmodesmata (PD) revealed that it not only permits cell-to-cell movement of Avr2, but also facilitates the movement of two additional effectors, Six6 and Six8. Moreover, although Avr2/Six5 expands the size exclusion limit of plasmodesmata (i.e., gating) to permit the movement of a 2xFP fusion protein (53 kDa), a larger variant, 3xFP protein (80 kDa), did not move to the neighboring cells. The PD manipulation mechanism employed by Avr2/Six5 did not involve alteration of callose homeostasis in these structures. In conclusion, the primary function of Six5 appears to function together with Avr2 to increase the size exclusion limit of plasmodesmata by an unknown mechanism to facilitate cell-to-cell movement of Fo effectors.

12.
Curr Opin Plant Biol ; 69: 102259, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841651

RESUMO

In their agro-ecological habitats, plants are constantly challenged by fungal interactions that might be pathogenic or beneficial in nature, and thus, plants need to exhibit appropriate responses to discriminate between them. Such interactions involve sophisticated molecular mechanism of signal exchange, signal transduction and regulation of gene expression. Small RNAs (smRNAs), including the microRNAs (miRNAs), form an essential layer of regulation in plant developmental processes as well as in plant adaptation to environmental stresses, being key for the outcome during plant-microbial interactions. Further, smRNAs are mobile signals that can go across kingdoms from one interacting partner to the other and hence can be used as communication as well as regulatory tools not only by the host plant but also by the colonising fungus. Here, largely with a focus on plant-fungal interactions and miRNAs, we will discuss the role of smRNAs, and how they might help plants to discriminate between friends and foes.


Assuntos
MicroRNAs , Plantas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/metabolismo , Estresse Fisiológico
13.
Front Plant Sci ; 13: 900231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845640

RESUMO

Trees acquire hydric and mineral soil resources through root mutualistic associations. In most boreal, temperate and Mediterranean forests, these functions are realized by a chimeric structure called ectomycorrhizae. Ectomycorrhizal (ECM) fungi are highly diversified and vary widely in their specificity toward plant hosts. Reciprocally, association patterns of ECM plants range from highly specialist to generalist. As a consequence, ECM symbiosis creates interaction networks, which also mediate plant-plant nutrient interactions among different individuals and drive plant community dynamics. Our knowledge of ECM networks essentially relies on a corpus acquired in temperate ecosystems, whereas the below-ground facets of both anthropogenic ECM forests and inter-tropical forests remain poorly investigated. Here, we successively (1) review the current knowledge of ECM networks, (2) examine the content of early literature produced in ECM cultivated forests, (3) analyze the recent progress that has been made in understanding the place of ECM networks in urban soils, and (4) provide directions for future research based on the identification of knowledge gaps. From the examined corpus of knowledge, we reach three main conclusions. First, the emergence of metabarcoding tools has propelled a resurgence of interest in applying network theory to ECM symbiosis. These methods revealed an unexpected interconnection between mutualistic plants with arbuscular mycorrhizal (AM) herbaceous plants, embedding ECM mycelia through root-endophytic interactions. This affinity of ECM fungi to bind VA and ECM plants, raises questions on the nature of the associated functions. Second, despite the central place of ECM trees in cultivated forests, little attention has been paid to these man-made landscapes and in-depth research on this topic is lacking. Third, we report a lag in applying the ECM network theory to urban soils, despite management initiatives striving to interconnect motile organisms through ecological corridors, and the highly challenging task of interconnecting fixed organisms in urban greenspaces is discussed. In particular, we observe a pauperized nature of resident ECM inoculum and a spatial conflict between belowground human pipelines and ECM networks. Finally, we identify the main directions of future research to make the needed link between the current picture of plant functioning and the understanding of belowground ECM networks.

14.
Front Microbiol ; 13: 868081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814642

RESUMO

Modern evolutionary theory and population genetics posit that adaptation and habitat expansion of plants result from processes exclusive to their genomes. Here, we present studies showing that plants can grow across complex habitat gradients by modulating symbiotic associations with Class 2 fungal endophytes. Endophyte analysis of three native (Leymus mollis, Distichlis spicata, and Salicornia pacifica) and one invasive (Spartina anglica) plant growing across adjacent microhabitats in the San Juan Archipelago altered associations with Class 2 fungal endophytes in response to soil salinity levels. At the microhabitat interfaces where the gradation of salinity varied, the plants were colonized by endophytes from both microhabitats. A reciprocal transplant study along a salt gradient demonstrated that Leymus mollis (dunegrass) required endophytes indigenous to each microhabitat for optimal fitness and/or survival. In contrast, when dunegrass and Grindelia integrifolia (gumweed) were found growing in low salinity, but high drought habitats, these plant species had their own unique dominant endophyte association regardless of geographic proximity and conferred drought but not high salt stress tolerance. Modulation of endophyte abundance occurred in planta based on the ability of the symbiont to confer tolerance to the stress imposed on plants. The ability of an endophyte to confer appropriate stress tolerance resulted in a significant increase of in planta fungal abundance. Conversely, the inability of an endophyte to confer stress tolerance resulted in a decrease of in planta fungal abundance. Our studies indicate that Class 2 fungal endophytes can provide a symbiotic mechanism for niche expansion and phenotypic plasticity across environmental gradients.

15.
J Appl Microbiol ; 133(2): 422-435, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35352442

RESUMO

AIM: The objective of this research was to screen fungal isolates originally isolated from cotton plants and measure their effects on the interactions between soybean and two aboveground pests (cabbage looper; Trichoplusia ni and soybean looper; Chrysodeixis includens) as well as a belowground pest (soybean cyst nematode; Heterodera glycines). METHODS AND RESULTS: For aboveground pests, we measured the leaf area consumed and larval weight. For our belowground pest tests, we measured shoot height, shoot fresh weight, root fresh weight and number of cysts. Out of the 50 fungal isolates tested, we tested 30 fungi in the interaction with cabbage looper, 36 for soybean looper, 41 for soybean cyst nematode. We tested 23 isolates against all pests and identified multiple isolates that significantly changed the response of pests on inoculated soybean plants versus controls. CONCLUSIONS: We identified three fungal isolates that significantly reduced both leaf area consumed aboveground by caterpillars and number of cysts produced belowground by nematodes. These isolates were an Epicoccum italicum, a Chaetomium undulatum and a Stemphylium majusculum. SIGNIFICANCE AND IMPACT OF STUDY: Overall, this study provides important insights into plant-fungal interactions and their effect on both above- and belowground pests. This study also highlights an important first step towards harnessing the potential of microbial inoculates as a tool for integrated pest management in soybeans.


Assuntos
Cistos , Fabaceae , Mariposas , Tylenchoidea , Animais , Fungos , Glycine max
16.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191483

RESUMO

Fungi from the genus Epichloë form systemic endobiotic infections of cool season grasses, producing a range of host-protective natural products in return for access to nutrients. These infections are asymptomatic during vegetative host growth, with associations between asexual Epichloë spp. and their hosts considered mutualistic. However, the sexual cycle of Epichloë spp. involves virulent growth, characterized by the envelopment and sterilization of a developing host inflorescence by a dense sheath of mycelia known as a stroma. Microscopic analysis of stromata revealed a dramatic increase in hyphal propagation and host degradation compared with asymptomatic tissues. RNAseq was used to identify differentially expressed genes in asymptomatic vs stromatized tissues from 3 diverse Epichloë-host associations. Comparative analysis identified a core set of 135 differentially expressed genes that exhibited conserved transcriptional changes across all 3 associations. The core differentially expressed genes more strongly expressed during virulent growth encode proteins associated with host suppression, digestion, adaptation to the external environment, a biosynthetic gene cluster, and 5 transcription factors that may regulate Epichloë stroma formation. An additional 5 transcription factor encoding differentially expressed genes were suppressed during virulent growth, suggesting they regulate mutualistic processes. Expression of biosynthetic gene clusters for natural products that suppress herbivory was universally suppressed during virulent growth, and additional biosynthetic gene clusters that may encode production of novel host-protective natural products were identified. A comparative analysis of 26 Epichloë genomes found a general decrease in core differentially expressed gene conservation among asexual species, and a specific decrease in conservation for the biosynthetic gene cluster expressed during virulent growth and an unusual uncharacterized gene.


Assuntos
Epichloe , Animais , Epichloe/genética , Estágios do Ciclo de Vida , Poaceae/genética , Simbiose/genética , Transcriptoma
17.
New Phytol ; 233(3): 1317-1330, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797921

RESUMO

Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.


Assuntos
Líquens , Xylariales , Endófitos , Fungos , Líquens/microbiologia , Família Multigênica , Simbiose/genética
18.
Trends Plant Sci ; 27(3): 247-254, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34756535

RESUMO

Plant roots are abundantly colonized by dark septate endophytic (DSE) fungi in virtually all ecosystems. DSE fungi are functionally heterogeneous and their relationships with plants range from antagonistic to mutualistic. Here, we consider the role of by-product benefits in DSE and other root-fungal symbioses. We compared host investments against symbiont-derived benefits for the host plant and categorized these benefits as by-products or benefits requiring reciprocal investment from the host. By-product benefits may provide the variability required for the evolution of invested mutualisms between the host and symbiont. We suggest that DSE could be considered as 'a by-product mutualist transitional phase' in the evolution of cooperative mycorrhizal symbionts from saprotrophic fungi.


Assuntos
Endófitos , Micorrizas , Ecossistema , Raízes de Plantas/microbiologia , Plantas , Simbiose
19.
Environ Sci Pollut Res Int ; 29(14): 20795-20807, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741271

RESUMO

Sugarcane cultivars (Saccharum officinarum L.) are widely cultivated for both sugar and renewable energy in China. The response of rhizosphere fungal composition and diversity to different emerging sugarcane cultivars is limited. Therefore, utilizing high-throughput sequencing, we explored fungal communities' structure in soils adhering to six sugarcane cultivars' roots (Guitang 08-120, Regan14-62, Guitang 08-1180, Haizhe 22, Liucheng 05-136, Taitang 22) in Guangxi Province, China. Our results suggested that sugarcane varieties significantly altered rhizosphere soil attributes, with Haizhe 22 having substantially lower soil pH, organic matter (OM), available phosphorus (AP), and soil water contents (SWC) than others cultivars. Different sugarcane varieties did not substantially affected the Shannon fungal diversity index, but the apparent effect on fungal richness was significant. Beta diversity analysis revealed that "Haizhe 22" distinguished the fungal community from the other five cultivars. Soil pH, OM, cultivars, and soil moisture were crucial determinants in shaping soil fungal composition. The Haizhe 22 rhizosphere significantly enriched the operational taxonomic units (OTUs) assigned to two fungal genera (Cephalotheca and Sagenomella), while rhizosphere of other verities significantly enriched the OTUs assigned to four fungal genera (Chaetomium, Chaetosphaeria, Mortierella, and Talaromyces), suggesting their essential role in plant development, disease tolerance, and bioremediation. These findings may help in selecting or breeding innovative genotypes capable of supporting abundant rhizosphere fungi beneficial to plants that would likely improve crops' agronomic potential and maintain soil ecosystem sustainability.


Assuntos
Micobioma , Saccharum , China , Ecossistema , Fungos/genética , Melhoramento Vegetal , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo
20.
Plants (Basel) ; 10(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685928

RESUMO

The multiple roles of fungal entomopathogens in host plants' growth promotion, pest and pathogen management have drawn huge attention for investigation. Endophytic species are known to influence various activities of their associated host plants, and the endophyte-colonized plants have been demonstrated to gain huge benefits from these symbiotic associations. The potential application of fungal endophytes as alternative to inorganic fertilizers for crop improvement has often been proposed. Similarly, various strains of insect pathogenic fungi have been formulated for use as mycopesticides and have been suggested as long-term replacement for the synthetic pesticides that are commonly in use. The numerous concerns about the negative effects of synthetic chemical pesticides have also driven attention towards developing eco-friendly pest management techniques. However, several factors have been underlined to be militating the successful adoption of entomopathogenic fungi and fungal endophytes as plant promoting, pests and diseases control bio-agents. The difficulties in isolation and characterization of novel strains, negative effects of geographical location, vegetation type and human disturbance on fungal entomopathogens, are among the numerous setbacks that have been documented. Although, the latest advances in biotechnology and microbial studies have provided means of overcoming many of these problems. For instance, studies have suggested measures for mitigating the negative effects of biotic and abiotic stressors on entomopathogenic fungi in inundative application on the field, or when applied in the form of fungal endophytes. In spite of these efforts, more studies are needed to be done to achieve the goal of improving the overall effectiveness and increase in the level of acceptance of entomopathogenic fungi and their products as an integral part of the integrated pest management programs, as well as potential adoption as an alternative to inorganic fertilizers and pesticides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA