Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 20(12): e2302410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37635113

RESUMO

Herein, a hybrid substrate for surface-enhanced Raman scattering (SERS) is fabricated, which couples localized surface plasmon resonance (LSPR), charge transfer (CT) resonance, and molecular resonance. Exfoliated 2D TiS2 nanosheets with semimetallic properties accelerate the CT with the tested analytes, inducing a remarkable chemical mechanism enhancement. In addition, the LSPR effect is coupled with a concave gold array located underneath the thin TiS2 nanosheet, providing a strong electromagnetic enhancement. The concave gold array is prepared by etching silicone nanospheres assembled on larger polystyrene nanospheres, followed by depositing a gold layer. The LSPR intensity near the gold layer can be adjusted by changing the layer thickness to couple the molecular and CT resonances, in order to maximize the SERS enhancement. The best SERS performance is recorded on TiS2-nanosheet-coated plasmonic substrates, with a detectable methylene blue concentration down to 10-13 m and an enhancement factor of 2.1 × 109 and this concentration is several orders of magnitude lower than that of the TiS2 nanosheet (10-11 m) and plasmonic substrates (10-9 m). The present hybrid substrate with triple-coupled resonance further shows significant advantages in the label-free monitoring of curcumin (a widely applied drug for treating multiple cancers and inflammations) in serum and urine.

2.
Heliyon ; 9(6): e16598, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292265

RESUMO

Surface plasmon resonance sensors have found wide applications in optical sensing field due to their excellent sensitivity to the slight refractive index change of surrounding medium. However, the intrinsically high optical losses in metals make it nontrivial to obtain narrow resonance spectra, which greatly limits the performance of surface plasmon resonance sensors. This review first introduces the influence factors of plasmon linewidths of metallic nanostructures. Then, various approaches to achieve narrow resonance linewidths are summarized, including the fabrication of nanostructured surface plasmon resonance sensors supporting surface lattice resonance/plasmonic Fano resonance or coupling with a photonic cavity, the preparation of surface plasmon resonance sensors with ultra-narrow resonators, as well as strategies such as platform-induced modification, alternating different dielectric layers, and the coupling with whispering-gallery-modes. Lastly, the applications and some existing challenges of surface plasmon resonance sensors are discussed. This review aims to provide guidance for the further development of nanostructured surface plasmon resonance sensors.

3.
Small ; 19(36): e2300361, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140078

RESUMO

Colloidal colorimetric microsensors enable the in-situ detection of mechanical strains within materials. Enhancing the sensitivity of these sensors to small scale deformation while enabling reversibility of the sensing capability would expand their utility in applications including biosensing and chemical sensing. In this study, we introduce the synthesis of colloidal colorimetric nano-sensors using a simple and readily scalable fabrication method. Colloidal nano sensors are prepared by emulsion-templated assembly of polymer-grafted gold nanoparticles (AuNP). To direct the adsorption of AuNP to the oil-water interface of emulsion droplets, AuNP (≈11nm) are functionalized with thiol-terminated polystyrene (PS, Mn  = 11k). These PS-grafted gold nanoparticles are suspended in toluene and subsequently emulsified to form droplets with a diameter of ≈30µm. By evaporating the solvent of the oil-inwater emulsion, we form nanocapsules (AuNC) (diameter < 1µm) decorated by PS-grafted AuNP. To test mechanical sensing, the AuNC are embedded in an elastomer matrix. The addition of a plasticizer reduces the glass transition temperature of the PS brushes, and in turn imparts reversible deformability to the AuNC. The plasmonic peak of the AuNC shifts towards lower wavelengths upon application of uniaxial tensile tension, indicating increased inter-nanoparticle distance, and reverts back as the tension is released.

4.
Nanomaterials (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049354

RESUMO

Fano resonances result from the strong coupling and interference between a broad background state and a narrow, almost discrete state, leading to the emergence of asymmetric scattering spectral profiles. Under certain conditions, Fano resonances can experience a collapse of their width due to the destructive interference of strongly coupled modes, resulting in the formation of bound states in the continuum (BIC). In such cases, the modes are simultaneously localized in the nanostructure and coexist with radiating waves, leading to an increase in the quality factor, which is virtually unlimited. In this work, we report on the design of a layered hybrid plasmonic-dielectric metasurface that facilitates strong mode coupling and the formation of BIC, resulting in resonances with a high quality factor. We demonstrate the possibility of controlling Fano resonances and tuning Rabi splitting using the nanoantenna dimensions. We also experimentally demonstrate the generalized Kerker effect in a binary arrangement of silicon nanodisks, which allows for the tuning of the collective modes and creates new photonic functionalities and improved sensing capabilities. Our findings have promising implications for developing plasmonic sensors that leverage strong light-matter interactions in hybrid metasurfaces.

5.
Crit Rev Anal Chem ; : 1-26, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36601882

RESUMO

Despite being extremely old concepts, plasmonics and surface plasmon resonance-based biosensors have been increasingly popular in the recent two decades due to the growing interest in nanooptics and are now of relevant significance in regards to applications associated with human health. Plasmonics integration into point-of-care devices for health surveillance has enabled significant levels of sensitivity and limit of detection to be achieved and has encouraged the expansion of the fields of study and market niches devoted to the creation of quick and incredibly sensitive label-free detection. The trend reflects in wearable plasmonic sensor development as well as point-of-care applications for widespread applications, demonstrating the potential impact of the new generation of plasmonic biosensors on human well-being through the concepts of personalized medicine and global health. In this context, the aim here is to discuss the potential, limitations, and opportunities for improvement that have arisen as a result of the integration of plasmonics into microsystems and lab-on-chip over the past five years. Recent applications of plasmonic biosensors in microsystems and sensor performance are analyzed. The final analysis focuses on the integration of microfluidics and lab-on-a-chip with quantum plasmonics technology prospecting it as a promising solution for chemical and biological sensing. Here it is underlined how the research in the field of quantum plasmonic sensing for biological applications has flourished over the past decade with the aim to overcome the limits given by quantum fluctuations and noise. The significant advances in nanophotonics, plasmonics and microsystems used to create increasingly effective biosensors would continue to benefit this field if harnessed properly.

6.
Nano Converg ; 9(1): 28, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695997

RESUMO

The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics.

7.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269329

RESUMO

Recently, sensors using surface-enhanced Raman scattering (SERS) detectors combined with superhydrophobic/superhydrophilic analyte concentration systems showed the ability to reach detection limits below the femto-molar level. However, a further increase in the sensitivity of these sensors is limited by the impossibility of the concentration systems to deposit the analyte on an area of less than 0.01 mm2. This article proposes a fundamentally new approach to the analyte enrichment, based on the effect of non-uniform electrostatic field on the evaporating droplet. This approach, combined with the optimized geometry of a superhydrophobic/superhydrophilic concentration system allows more than a six-fold reduction of the deposition area. Potentially, this makes it possible to improve the detection limit of the plasmonic sensors by the same factor, bringing it down to the attomolar level.

8.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161695

RESUMO

A range of optical fibre-based sensors for the measurement of ethanol, primarily in aqueous solution, have been developed and are reviewed here. The sensing approaches can be classified into four groups according to the measurement techniques used, namely absorption (or absorbance), external interferometric, internal fibre grating and plasmonic sensing. The sensors within these groupings can be compared in terms of their characteristic performance indicators, which include sensitivity, resolution and measurement range. Here, particular attention is paid to the potential application areas of these sensors as ethanol production is globally viewed as an important industrial activity. Potential industrial applications are highlighted in the context of the emergence of the internet of things (IoT), which is driving widespread utilization of these sensors in the commercially significant industrial and medical sectors. The review concludes with a summary of the current status and future prospects of optical fibre ethanol sensors for industrial use.


Assuntos
Etanol , Fibras Ópticas
9.
Methods Mol Biol ; 2385: 237-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34888723

RESUMO

Surface plasmon resonance (SPR) is a real-time kinetic measurement principle that can probe the kinetic interactions between ligands and their binding sites, and lies at the backbone of pharmaceutical, biosensing, and biomolecular research. The extraction of dissociation rates from SPR-response signals often relies on several commonly adopted assumptions, one of which is the exponential decay of the dissociation part of the response signal. However, certain conditions, such as high density of binding sites or high concentration fluctuations near the surface as compared to the bulk, can lead to non-exponential decays via ligand rebinding or facilitated dissociation. Consequently, fitting the data with an exponential function can underestimate or overestimate the measured dissociation rates. Here, we describe a set of alternative fit functions that can take such effects into consideration along with plasmonic sensor design principles with key performance metrics, thereby suggesting methods for error-free high-precision extraction of the dissociation rates.


Assuntos
Ressonância de Plasmônio de Superfície , Benchmarking , Sítios de Ligação , Técnicas Biossensoriais , Cinética , Ligantes
10.
Biosens Bioelectron ; 197: 113805, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801795

RESUMO

Optical biosensors are rapid, real-time, and portable, have a low detection limit and a high sensitivity, and have a great potential for diagnosing various types of cancer. Optical biosensors can detect cancer in a few million malignant cells, in comparison to conventional diagnosis techniques that use 1 billion cells in tumor tissue with a diameter of 7 nm-10 nm. Current cancer detection methods are also costly, inconvenient, complex, time consuming, and require technical specialists. This review focuses on recent advances in optical biosensors for early detection of cancer. It is primarily concerned with advancements in the design of various biosensors using resonance, scattering, chemiluminescence, luminescence, interference, fluorescence, absorbance or reflectance, and various fiber types. The development of various two-dimensional materials with optical properties such as biocompatibility, field enhancement, and a higher surface-to-volume ratio, as well as advancements in microfabrication technologies, have accelerated the development of optical sensors for early detection of cancer and other diseases. Surface enhanced Raman spectroscopy technology has the potential to detect a single molecule with high specificity, and terahertz waves are a recently explored technology for cancer detection. Due to the low electromagnetic interference, small size, multiplexing, and remote sensing capabilities of optical fiber-based platforms, they may be a driving force behind the rapid development of biosensors. The advantages and disadvantages of existing and future optical biosensor designs for cancer detection are discussed in detail. Additionally, a prospect for future advancements in the development of optical biosensors for point-of-care and clinical applications is highlighted.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Luminescência , Neoplasias/diagnóstico , Fibras Ópticas , Análise Espectral Raman
11.
Mikrochim Acta ; 188(10): 326, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34494176

RESUMO

Plasmonic nanosensors for label-free detection of DNA require excellent sensing resolution, which is crucial when monitoring short DNA sequences, as these induce tiny peak shifts, compared to large biomolecules. We report a versatile and simple strategy for plasmonic sensor signal enhancement by assembling multiple (four) plasmonic sensors in series. This approach provided a fourfold signal enhancement, increased signal-to-noise ratio, and improved sensitivity for DNA detection. The response of multiple sensors based on AuNSpheres was also compared with  AuNRods, the latter showing better sensing resolution. The amplification system based on AuNR was integrated into  a microfluidic sequential injection platform and applied to the monitoring of DNA, specifically from environmental invasive species-zebra mussels. DNA from zebra mussels was log concentration-dependent from 1 to 1 × 106 pM, reaching a detection limit of 2.0 pM. In situ tests were also successfully applied to real samples, within less than 45 min, using DNA extracted from zebra mussel meat. The plasmonic nanosensors' signal can be used as a binary output (yes/no) to assess the presence of those invasive species. Even though these genosensors were applied to the monitoring of DNA in environmental samples, they potentially offer advantage in a wide range of fields, such as disease diagnostics.


Assuntos
DNA/análise , Técnicas Analíticas Microfluídicas/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Dreissena/química , Ouro/química , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Nanosferas/química , Nanotubos/química , Hibridização de Ácido Nucleico , Alimentos Marinhos/análise
12.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450704

RESUMO

Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.


Assuntos
Fibras Ópticas , Ressonância de Plasmônio de Superfície , Monitoramento Ambiental
13.
Sensors (Basel) ; 21(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809416

RESUMO

Alzheimer's disease (AD), considered a common type of dementia, is mainly characterized by a progressive loss of memory and cognitive functions. Although its cause is multifactorial, it has been associated with the accumulation of toxic aggregates of the amyloid-ß peptide (Aß) and neurofibrillary tangles (NFTs) of tau protein. At present, the development of highly sensitive, high cost-effective, and non-invasive diagnostic tools for AD remains a challenge. In the last decades, nanomaterials have emerged as an interesting and useful tool in nanomedicine for diagnostics and therapy. In particular, plasmonic nanoparticles are well-known to display unique optical properties derived from their localized surface plasmon resonance (LSPR), allowing their use as transducers in various sensing configurations and enhancing detection sensitivity. Herein, this review focuses on current advances in in vitro sensing techniques such as Surface-enhanced Raman scattering (SERS), Surface-enhanced fluorescence (SEF), colorimetric, and LSPR using plasmonic nanoparticles for improving the sensitivity in the detection of main biomarkers related to AD in body fluids. Additionally, we refer to the use of plasmonic nanoparticles for in vivo imaging studies in AD.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Humanos , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119660, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744843

RESUMO

Gold nanoparticles (AuNP) modified with antibody and rifampicin (RP) were tested against Mycobacterium bovis Bacillus Calmette-Guérin (BCG), which previously generated in vitro infection of macrophages from mice. Such a drug delivery system works as nanocarrier for RP and presented lower toxicity for macrophages cells than each separated component. Surface-enhanced Raman scattering (SERS) spectroscopy and fluorescence microscopy were used as analytical tools for the characterization of the internalization of gold nanocarriers into macrophage cells. The effective antibiotic action of RP, when combined with gold nanocarrier, was confirmed by dead-live assay of BCG bacteria lysed from macrophages after incubation. Such results indicate the delivery of RP to BCG bacteria, which were infecting macrophages, occurred with remarkable efficiency. It was rationalized based on the strategy used for the adsorption of antibody molecules on gold surface.


Assuntos
Nanopartículas Metálicas , Mycobacterium bovis , Animais , Sistemas de Liberação de Medicamentos , Ouro , Macrófagos , Camundongos , Análise Espectral Raman
15.
Microsc Res Tech ; 84(3): 563-570, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33026138

RESUMO

A silicon microring circuit embedded gold film with unique characteristics is proposed for Hall effect, current, and temperature sensing applications. The microring circuit is operated by the input polarized laser sources, in which the space-time distortion control can be employed. A gold film is embedded at the microring center. The whispering gallery mode (WGM) is generated and applied for plasmonic waves, from which the trapped electron cloud oscillation is formed. Through the input port, the input polarized light of 1.55 µm wavelength fed into the space-time control circuit. Spin-up |↑〉(|0〉) and spin-down |↓〉(|1〉) of polarized electrons result when the gold film is illuminated by the WGM. The electric current passing through the gold film generates a magnetic field (B), which is orthogonal to the electric field. Hall voltage is obtained at the output of the circuit, from which the microring space-time circuit can operate for Hall's effect, current, and temperature sensing device. The simulation results obtained have shown that when the input power of 100-500 mW is applied, the optimum Hall effect, current, and temperature sensitivities are 0.12 µVT-1 , 0.9 µVA-1 , and 6.0 × 10-2 µVK-1 , respectively. The Hall effects, current, and temperature sensors have an optimum response time of 1.9 fs.

16.
Adv Sci (Weinh) ; 7(23): 2000763, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304743

RESUMO

Biomolecular detection at a low concentration is usually the most important criterion for biological measurement and early stage disease diagnosis. In this paper, a highly sensitive nanoplasmonic biosensing approach is demonstrated by achieving near-infrared plasmonic excitation on a continuous gold-coated nanotriangular array. Near-infrared incident light at a small incident angle excites surface plasmon resonance with much higher spectral sensitivity compared with traditional configuration, due to its greater interactive volume and the stronger electric field intensity. By introducing sharp nanotriangular metallic tips, intense localization of plasmonic near-fields is realized to enhance the molecular perception ability on sensing surface. This approach with an enhanced sensitivity (42103.8 nm per RIU) and a high figure of merit (367.812) achieves a direct assay of ssDNA at nanomolar level, which is a further step in label-free ultrasensitive sensing technique. Considerable improvement is recorded in the detection limit of ssDNA as 1.2 × 10-18 m based on the coupling effect between nanotriangles and gold nanoparticles. This work combines high bulk- and surface-sensitivities, providing a simple way toward label-free ultralow-concentration biomolecular detection.

17.
Sensors (Basel) ; 21(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374321

RESUMO

The backscattering spectra of a 500 nm thick gold film, which was excited near the 525 nm transverse localized plasmon resonance of its constituent, self-organized, vertically-aligned nanorods by normally incident 515 nm, 300 fs laser pulses with linear, radial, azimuthal and circular polarizations, revealed a few-percent conversion into Stokes and anti-Stokes side-band peaks. The investigation of these spectral features based on the nanoscale characterization of the oligomeric structure and numerical simulations of its backscattering response indicated nonlinear Fano-like plasmonic interactions, particularly the partially degenerate four-wave mixing comprised by the visible-range transverse plasmon resonance of the individual nanorods and an IR-range collective mode of the oligomeric structure. Such oligomeric structures in plasmonic films may greatly enhance inner nonlinear electromagnetic interactions and inner near-IR hotspots, paving the way for their engineered IR tunability for broad applications in chemosensing and biosensing.

18.
Biosensors (Basel) ; 10(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076308

RESUMO

Sensors are excellent options owing to their ability to figure out a large number of problems and challenges in several areas, including homeland security, defense, medicine, pharmacology, industry, environment, agriculture, food safety, and so on. Plasmonic sensors are used as detection devices that have important properties, such as rapid recognition, real-time analysis, no need labels, sensitive and selective sensing, portability, and, more importantly, simplicity in identifying target analytes. This review summarizes the state-of-art molecular recognition of biological and chemical threat agents. For this purpose, the principle of the plasmonic sensor is briefly explained and then the use of plasmonic sensors in the monitoring of a broad range of biological and chemical threat agents is extensively discussed with different types of threats according to the latest literature. A conclusion and future perspectives are added at the end of the review.


Assuntos
Armas Biológicas , Substâncias para a Guerra Química/análise , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais , Nanoestruturas
19.
Nanomaterials (Basel) ; 10(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751278

RESUMO

Solution processed TiO2 anatase film was used as sensitive layer for H2 detection for two plasmonic sensor configurations: A grating-coupled surface plasmon resonance sensor and a localized surface plasmon resonance sensor with gold nanoparticles. The main purpose of this paper is to elucidate the different H2 response observed for the two types of sensors which can be explained considering the hydrogen dissociation taking place on TiO2 at high temperature and the photocatalytic activity of the gold nanoparticles.

20.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521770

RESUMO

With the increasing demand of achieving comprehensive perception in every aspect of life, optical fibers have shown great potential in various applications due to their highly-sensitive, highly-integrated, flexible and real-time sensing capabilities. Among various sensing mechanisms, plasmonics based fiber-optic sensors provide remarkable sensitivity benefiting from their outstanding plasmon-matter interaction. Therefore, surface plasmon resonance (SPR) and localized SPR (LSPR)-based hybrid fiber-optic sensors have captured intensive research attention. Conventionally, SPR- or LSPR-based hybrid fiber-optic sensors rely on the resonant electron oscillations of thin metallic films or metallic nanoparticles functionalized on fiber surfaces. Coupled with the new advances in functional nanomaterials as well as fiber structure design and fabrication in recent years, new solutions continue to emerge to further improve the fiber-optic plasmonic sensors' performances in terms of sensitivity, specificity and biocompatibility. For instance, 2D materials like graphene can enhance the surface plasmon intensity at the metallic film surface due to the plasmon-matter interaction. Two-dimensional (2D) morphology of transition metal oxides can be doped with abundant free electrons to facilitate intrinsic plasmonics in visible or near-infrared frequencies, realizing exceptional field confinement and high sensitivity detection of analyte molecules. Gold nanoparticles capped with macrocyclic supramolecules show excellent selectivity to target biomolecules and ultralow limits of detection. Moreover, specially designed microstructured optical fibers are able to achieve high birefringence that can suppress the output inaccuracy induced by polarization crosstalk and meanwhile deliver promising sensitivity. This review aims to reveal and explore the frontiers of such hybrid plasmonic fiber-optic platforms in various sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA