Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Environ Toxicol Chem ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923588

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are a group of widely used chemicals added to a variety of consumer (e.g., plastics) and industrial (e.g., metal coating) goods. Although detected globally as an environmentally persistent pollutant, BUVSs have received relatively little toxicological attention and only recently have been acknowledged to affect development and the endocrine system in vivo. In our previous study, altered behavior, indicative of potential neurotoxicity, was observed among rainbow trout alevins (day 14 posthatching) that were microinjected as embryos with a single environmentally relevant dose of 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) phenol (UV-327). In the present follow-up study, we performed whole-transcriptome profiling (RNA sequencing) of newly hatched alevins from the same batch. The primary aim was to identify biomarkers related to behavior and neurology. Dose-specifically, 1 to 176 differentially expressed genes (DEGs) were identified. In the group presenting altered behavior (273.4 ng g-1), 176 DEGs were identified, yet only a fraction was related to neurological functions, including water, calcium, and potassium homeostasis; acetylcholine transmission and signaling; as well insulin and energy metabolism. The second objective was to estimate the transcriptomic point of departure (tPOD) and assess if point estimate(s) are protective of altered behavior. A tPOD was established at 35 to 94 ng UV-327 g-1 egg, making this tPOD protective of behavioral alterations. Holistically, these transcriptomic alterations provide a foundation for future research on how BUVSs can influence rainbow trout alevin development, while providing support to the hypothesis that UV-327 can influence neurogenesis and subsequent behavioral endpoints. The exact structural and functional changes caused by embryonic exposure to UV-327 remain enigmatic and will require extensive investigation before being deciphered and understood toxicologically. Environ Toxicol Chem 2024;00:1-12. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
J Hazard Mater ; 476: 134986, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38944992

RESUMO

Next-generation risk assessment (NGRA) has emerged as a promising alternative to non-animal studies owing to the increasing demand for the risk assessment of inhaled toxicants. In this study, NGRA was used to assess the inhalation risks of two biocides commonly used as humidifier disinfectants: polyhexamethylene guanidine phosphate (PHMG-p) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT). Human bronchial epithelial cell transcriptomic data were processed based on adverse outcome pathways and used to establish transcriptome-based points of departure (tPODs) for each biocide. tPOD values were 0.00500-0.0510 µg/cm2 and 0.0342-0.0544 µg/cm2 for PHMG-p and CMIT/MIT, respectively. tPODs may provide predictive power comparable to that of traditional animal-based PODs (aPODs). The tPOD-based NGRA determined that both PHMG-p and CMIT/MIT present a high inhalation risk. Moreover, the identified PHMG-p posed a higher risk than CMIT/MIT, and children were identified as more susceptible population compared to adults. This finding is consistent with observations from actual exposure events. Our findings suggest that NGRA with transcriptomics offers a reliable approach for risk assessment of specific humidifier disinfectant biocides, while acknowledging the limitations of current models and in vitro systems, particularly regarding uncertainties in pharmacokinetics (PK) and pharmacodynamics (PD).

3.
Food Chem Toxicol ; 189: 114725, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744418

RESUMO

Wearable devices are in contact with the skin for extended periods. As such, the device constituents should be evaluated for their skin sensitization potential, and a Point of Departure (PoD) should be derived to conduct a proper risk assessment. Without historical in vivo data, the PoD must be derived with New Approach Methods (NAMs). To accomplish this, regression models trained on LLNA data that use data inputs from OECD-validated in vitro tests were used to derive a predicted EC3 value, the LLNA value used to classify skin sensitization potency, for three adhesive monomers (Isobornyl acrylate (IBOA), N, N- Dimethylacrylamide (NNDMA), and Acryloylmorpholine (ACMO) and one dye (Solvent Orange 60 (SO60)). These chemicals can be used as constituents of wearable devices and have been associated with causing allergic contact dermatitis (ACD). Using kinetic DPRA and KeratinoSens™ data, the PoDs obtained with the regression model were 180, 215, 1535, and 8325 µg/cm2 for IBOA, SO60, ACMO, and NNDMA, respectively. The PoDs derived with the regression model using NAMs data will enable a proper skin sensitization risk assessment without using animals.


Assuntos
Dermatite Alérgica de Contato , Dispositivos Eletrônicos Vestíveis , Humanos , Dermatite Alérgica de Contato/etiologia , Medição de Risco , Pele/efeitos dos fármacos , Acrilatos/química , Acrilatos/toxicidade , Adesivos/química
4.
Front Genet ; 15: 1374791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784034

RESUMO

A key step in assessing the potential human and environmental health risks of industrial and agricultural chemicals is to determine the toxicity point of departure (POD), which is the highest dose level that causes no adverse effect. Transcriptomic POD (tPOD) values have been suggested to accurately estimate toxicity POD values. One step in the most common approach for tPOD determination involves mapping genes to annotated gene sets, a process that might lead to substantial information loss particularly in species with poor gene annotation. Alternatively, methods that calculate tPOD values directly from the distribution of individual gene POD values omit this mapping step. Using rat transcriptome data for 79 molecules obtained from Open TG-GATEs (Toxicogenomics Project Genomics Assisted Toxicity Evaluation System), the hypothesis was tested that methods based on the distribution of all individual gene POD values will give a similar tPOD value to that obtained via the gene set-based method. Gene set-based tPOD values using four different gene set structures were compared to tPOD values from five different individual gene distribution methods. Results revealed a high tPOD concordance for all methods tested, especially for molecules with at least 300 dose-responsive probesets: for 90% of those molecules, the tPOD values from all methods were within 4-fold of each other. In addition, random gene sets based upon the structure of biological knowledge-derived gene sets produced tPOD values with a median absolute fold change of 1.3-1.4 when compared to the original biological knowledge-derived gene set counterparts, suggesting that little biological information is used in the gene set-based tPOD generation approach. These findings indicate using individual gene distributions to calculate a tPOD is a viable and parsimonious alternative to using gene sets. Importantly, individual gene distribution-based tPOD methods do not require knowledge of biological organization and can be applied to any species including those with poorly annotated gene sets.

5.
Regul Toxicol Pharmacol ; 148: 105596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447894

RESUMO

To fulfil the promise of reducing reliance on mammalian in vivo laboratory animal studies, new approach methods (NAMs) need to provide a confident basis for regulatory decision-making. However, previous attempts to develop in vitro NAMs-based points of departure (PODs) have yielded mixed results, with PODs from U.S. EPA's ToxCast, for instance, appearing more conservative (protective) but poorly correlated with traditional in vivo studies. Here, we aimed to address this discordance by reducing the heterogeneity of in vivo PODs, accounting for species differences, and enhancing the biological relevance of in vitro PODs. However, we only found improved in vitro-to-in vivo concordance when combining the use of Bayesian model averaging-based benchmark dose modeling for in vivo PODs, allometric scaling for interspecies adjustments, and human-relevant in vitro assays with multiple induced pluripotent stem cell-derived models. Moreover, the available sample size was only 15 chemicals, and the resulting level of concordance was only fair, with correlation coefficients <0.5 and prediction intervals spanning several orders of magnitude. Overall, while this study suggests several ways to enhance concordance and thereby increase scientific confidence in vitro NAMs-based PODs, it also highlights challenges in their predictive accuracy and precision for use in regulatory decision making.


Assuntos
Mamíferos , Animais , Humanos , Teorema de Bayes , Medição de Risco/métodos
6.
Environ Int ; 186: 108596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522228

RESUMO

Organophosphate flame retardants (OPFRs) have been widely detected in multiple environment media and have many adverse effects with complex toxicity mechanisms. However, the early molecular responses to OPFRs have not been fully elucidated, thereby making it difficult to assess their risks accurately. In this work, we systematically explored the point of departure (POD) of biological pathways at genome-wide level perturbed by 14 OPFRs with three substituents (alkyl, halogen, and aryl) using a dose-dependent functional genomics approach in Saccharomyces cerevisiae at 24 h exposure. Firstly, our results demonstrated that the overall biological potency at gene level (PODDRG20) ranged from 0.013 to 35.079 µM for 14 OPFRs, especially the tributyl phosphate (TnBP) exhibited the strongest biological potency with the least PODDRG20. Secondly, we found that structural characteristics of carbon number and logKow were significantly negatively correlated with POD, and carbon number and logKow also significantly affected lipid metabolism associated processes. Thirdly, these early biological pathways of OPFRs toxification were found to be involved in lipid metabolism, oxidative stress, DNA damage, MAPK signaling pathway, and amino acid and carbohydrate metabolism, among which the lipid metabolism was the most sensitive molecular response perturbed by most OPFRs. More importantly, we identified one resistant mutant strain with knockout of ERG2 (YMR202W) gene participated in steroid biosynthesis pathway, which can serve as a key yeast strain of OPFRs toxification. Overall, our study demonstrated an effective platform for accurately assessing OPFRs risks and provided a basis for further green OPFRs development.


Assuntos
Retardadores de Chama , Genômica , Organofosfatos , Saccharomyces cerevisiae , Retardadores de Chama/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Organofosfatos/toxicidade , Relação Dose-Resposta a Droga
7.
Crit Rev Toxicol ; 54(1): 2-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318766

RESUMO

INTRODUCTION: Fluoride is a naturally occurring substance that is also added to drinking water, dental hygiene products, and food supplements for preventing dental caries. Concerns have been raised about several other potential health risks of fluoride. OBJECTIVE: To conduct a robust synthesis of evidence regarding human health risks due to exposure to fluoride in drinking water, and to develop a point of departure (POD) for setting a health-based value (HBV) for fluoride in drinking water. METHODS: A systematic review of evidence published since recent reviews of human, animal, and in vitro data was carried out. Bradford Hill considerations were used to weigh the evidence for causality. Several key studies were considered for deriving PODs. RESULTS: The current review identified 89 human studies, 199 animal studies, and 10 major in vitro reviews. The weight of evidence on 39 health endpoints was presented. In addition to dental fluorosis, evidence was considered strong for reduction in IQ scores in children, moderate for thyroid dysfunction, weak for kidney dysfunction, and limited for sex hormone disruptions. CONCLUSION: The current review identified moderate dental fluorosis and reduction in IQ scores in children as the most relevant endpoints for establishing an HBV for fluoride in drinking water. PODs were derived for these two endpoints, although there is still some uncertainty in the causal weight of evidence for causality for reducing IQ scores in children and considerable uncertainty in the derivation of its POD. Given our evaluation of the overall weight of evidence, moderate dental fluorosis is suggested as the key endpoint until more evidence is accumulated on possible reduction of IQ scores effects. A POD of 1.56 mg fluoride/L for moderate dental fluorosis may be preferred as a starting point for setting an HBV for fluoride in drinking water to protect against moderate and severe dental fluorosis. Although outside the scope of the current review, precautionary concerns for potential neurodevelopmental cognitive effects may warrant special consideration in the derivation of the HBV for fluoride in drinking water.

8.
ALTEX ; 41(2): 213-232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38376873

RESUMO

Next generation risk assessment of chemicals revolves around the use of mechanistic information without animal experimentation. In this regard, toxicogenomics has proven to be a useful tool to elucidate the underlying mechanisms of adverse effects of xenobiotics. In the present study, two widely used human in vitro hepatocyte culture systems, namely primary human hepatocytes (PHH) and human hepatoma HepaRG cells, were exposed to liver toxicants known to induce liver cholestasis, steatosis or necrosis. Benchmark concentration-response modelling was applied to transcriptomics gene co-expression networks (modules) to derive benchmark concentrations (BMCs) and to gain mechanistic insight into the hepatotoxic effects. BMCs derived by concentration-response modelling of gene co-expression modules recapitulated concentration-response modelling of individual genes. Although PHH and HepaRG cells showed overlap in deregulated genes and modules by the liver toxicants, PHH demonstrated a higher responsiveness, based on the lower BMCs of co-regulated gene modules. Such BMCs can be used as transcriptomics point of departure (tPOD) for assessing module-associated cellular (stress) pathways/processes. This approach identified clear tPODs of around maximum systemic concentration (Cmax) levels for the tested drugs, while for cosmetics ingredients the BMCs were 10-100-fold higher than the estimated plasma concentrations. This approach could serve next generation risk assessment practice to identify early responsive modules at low BMCs, that could be linked to key events in liver adverse outcome pathways. In turn, this can assist in delineating potential hazards of new test chemicals using in vitro systems and used in a risk assessment when BMCs are paired with chemical exposure assessment.


Risk assessment of chemicals has traditionally been focused on animal experiments. In contrast, next generation risk assessment uses biological information obtained from experiments in cell culture models without animals to identify potential hazards. Since the liver is the main target organ of toxicity, many liver cell (hepatocyte) models have been developed and applied for hazard assessment. In this study, two widely used human hepatocyte cell models, PHH and HepaRG, were exposed to liver toxic chemicals. Biological changes in gene expression were measured in a concentration range to identify the concentration at which a biological response was perturbed using concentration response modelling. Genes belonging to the same biological process were joined based on co-expression to derive an average concentration of this process. This animal-free approach could be applied for risk assessment when biological response concentrations were related to the expected human exposure to identify potential hazard of the test chemicals.


Assuntos
Segurança Química , Redes Reguladoras de Genes , Animais , Humanos , Hepatócitos , Fígado , Perfilação da Expressão Gênica
9.
Mutagenesis ; 39(2): 96-118, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38183622

RESUMO

The N-nitrosamine, N-nitrosodimethylamine (NDMA), is an environmental mutagen and rodent carcinogen. Small levels of NDMA have been identified as an impurity in some commonly used drugs, resulting in several product recalls. In this study, NDMA was evaluated in an OECD TG-488 compliant Muta™Mouse gene mutation assay (28-day oral dosing across seven daily doses of 0.02-4 mg/kg/day) using an integrated design that assessed mutation at the transgenic lacZ locus in various tissues and at the endogenous Pig-a gene-locus, along with micronucleus frequencies in peripheral blood. Liver pathology was determined together with NDMA exposure in blood and liver. The additivity of mutation induction was assessed by including two acute single-dose treatment groups (i.e. 5 and 10 mg/kg dose on Day 1), which represented the same total dose as two of the repeat dose treatment groups. NDMA did not induce statistically significant increases in mean lacZ mutant frequency (MF) in bone marrow, spleen, bladder, or stomach, nor in peripheral blood (Pig-a mutation or micronucleus induction) when tested up to 4 mg/kg/day. There were dose-dependent increases in mean lacZ MF in the liver, lung, and kidney following 28-day repeat dosing or in the liver and kidney after a single dose (10 mg/kg). No observed genotoxic effect levels (NOGEL) were determined for the positive repeat dose-response relationships. Mutagenicity did not exhibit simple additivity in the liver since there was a reduction in MF following NDMA repeat dosing compared with acute dosing for the same total dose. Benchmark dose modelling was used to estimate point of departure doses for NDMA mutagenicity in Muta™Mouse and rank order target organ tissue sensitivity (liver > kidney or lung). The BMD50 value for liver was 0.32 mg/kg/day following repeat dosing (confidence interval 0.21-0.46 mg/kg/day). In addition, liver toxicity was observed at doses of ≥ 1.1 mg/kg/day NDMA and correlated with systemic and target organ exposure. The integration of these results and their implications for risk assessment are discussed.


Assuntos
Dimetilnitrosamina , Mutagênicos , Dimetilnitrosamina/toxicidade , Mutação , Mutagênicos/toxicidade , Dano ao DNA , Mutagênese
10.
Toxicol In Vitro ; 95: 105761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081393

RESUMO

There is increasing interest to employ in vitro transcriptomics experiments in toxicological testing, for example to determine a point-of-departure (PoD) for chemical safety assessment. However current practices to derive PoD tend to utilise a single exposure time despite the importance of exposure time on the manifestation of toxicity caused by a chemical. Therefore it is important to investigate both concentration and exposure time to determine how these factors affect biological responses, and as a consequence, the derivation of PoDs. In this study, metabolically competent HepaRG cells were exposed to five known toxicants over a range of concentrations and time points for subsequent gene expression analysis, using a targeted RNA expression assay (TempO-Seq). A non-parametric factor-modelling approach was used to model the collective response of all significant genes, which exploited the interdependence of differentially expressed gene responses. This in turn allowed the determination of an isobenchmark response (isoBMR) curve for each chemical in a reproducible manner. For 2 of the 5 chemicals tested, the PoD was observed to vary by 0.5-1 log-order within the 48-h timeframe of the experiment. The approach and findings presented here clearly demonstrate the need to take both concentration and exposure time into account when designing in vitro toxicogenomics experiments to determine PoD. Doing so also provides a means to use concentration-time-response modelling as a basis to extrapolate a PoD from shorter to longer exposure durations, and to identify chemicals of concern that can cause cumulative effects over time.


Assuntos
Benchmarking , Perfilação da Expressão Gênica , Medição de Risco
11.
Toxicology ; 501: 153694, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043774

RESUMO

Multiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression. In the present study, we examine a range of computational methods to calculate tPODs from HTTr data, using six data sets in which MCF7 cells cultured in two different media formulations were treated with a panel of 44 chemicals for 3 different exposure durations (6, 12, 24 hr). The tPOD calculation methods use data at the level of individual genes and gene set signatures, and compare data processed using the ToxCast Pipeline 2 (tcplfit2), BMDExpress and PLIER (Pathway Level Information ExtractoR). Methods were evaluated by comparing to in vitro PODs from a validated set of high-throughput screening (HTS) assays for a set of estrogenic compounds. Key findings include: (1) for a given chemical and set of experimental conditions, tPODs calculated by different methods can vary by several orders of magnitude; (2) tPODs are at least as sensitive to computational methods as to experimental conditions; (3) in comparison to an external reference set of PODs, some methods give generally higher values, principally PLIER and BMDExpress; and (4) the tPODs from HTTr in this one cell type are mostly higher than the overall PODs from a broad battery of targeted in vitro ToxCast assays, reflecting the need to test chemicals in multiple cell types and readout technologies for in vitro hazard screening.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Ensaios de Triagem em Larga Escala/métodos , Estrogênios , Linhagem Celular , Medição de Risco/métodos
12.
Toxicol Mech Methods ; : 1-17, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031359

RESUMO

The Threshold of Toxicological Concern (TTC) is an approach for assessing the safety of chemicals with low levels of exposure for which limited toxicology data are available. The original TTC criteria were derived for oral exposures from a distributional analysis of a dataset of 613 chemicals that identified 5th percentile no observed effect level (NOEL) values grouped within three tiers of compounds having specific structural functional groups and/or toxic potencies known as Cramer I, II and III classifications. Subsequent assessments of the TTC approach have established current thresholds to be scientifically robust. While the TTC has gained acknowledgment and acceptance by many regulatory agencies and organizations, use of the TTC approach in evaluating drinking water chemicals has been limited. To apply the TTC concept to drinking water chemicals, an exposure-based approach that incorporates the current weight of evidence for the target chemical is presented. Such an approach provides a comparative point of departure to the 5th percentile TTC NOEL using existing data, while conserving the allocation of toxicological resources for quantitative risk assessment to chemicals with greater exposure or toxicity. This approach will be considered for incorporation into NSF/ANSI/CAN 600, a health effects standard used in the safety evaluation of chemicals present in drinking water from drinking water contact additives and materials certified to NSF/ANSI/CAN 60 and 61, respectively.

13.
Food Chem Toxicol ; 182: 114182, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951343

RESUMO

The purpose of this study was to update the existing Cancer Potency Database (CPDB) in order to support the development of a dataset of compounds, with associated points of departure (PoDs), to enable a review and update of currently applied values for the Threshold of Toxicological Concern (TTC) for cancer endpoints. This update of the current CPDB, last reviewed in 2012, includes the addition of new data (44 compounds and 158 studies leading to additional 359 dose-response curves). Strict inclusion criteria were established and applied to select compounds and studies with relevant cancer potency data. PoDs were calculated from dose-response modeling, including the benchmark dose (BMD) and the lower 90% confidence limits (BMDL) at a specified benchmark response (BMR) of 10%. The updated full CPDB database resulted in a total of 421 chemicals which had dose-response data that could be used to calculate PoDs. This candidate dataset for cancer TTC is provided in a transparent and adaptable format for further analysis of TTC to derive cancer potency thresholds.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Bases de Dados Factuais , Medição de Risco
14.
Ecotoxicol Environ Saf ; 268: 115704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979356

RESUMO

Studies on the comparison of developmental (neuro) toxicity of parabens are currently limited, and unharmonized concentrations between phenotypic observations and transcriptome analysis hamper the understanding of their differential molecular mechanisms. Thus, developmental toxicity testing was conducted herein using the commonly used methyl- (MtP), ethyl- (EtP), and propyl-parabens (PrP) in zebrafish embryos. With a benchmark dose of 5%, embryonic-mortality-based point-of-departure (M-POD) values of the three parabens were determined, and changes in locomotor behavior were evaluated at concentrations of 0, M-POD/50, M-POD/10, and M-POD, where transcriptome analysis was conducted to explore the underlying neurotoxicity mechanism. Higher long-chained parabens were more toxic than short-chained parabens, as determined by the M-POD values of 154.1, 72.6, and 24.2 µM for MtP, EtP, and PrP, respectively. Meanwhile, exposure to EtP resulted in hyperactivity, whereas no behavioral effect was observed with MtP and PrP. Transcriptome analysis revealed that abnormal behaviors in the EtP-exposed group were associated with distinctly enriched pathways in signaling, transport, calcium ion binding, and metal binding. In contrast, exposure to MtP and PrP mainly disrupted membranes and transmembranes, which are closely linked to abnormal embryonic development rather than neurobehavioral changes. According to the changes in the expressions of signature mRNAs, tentative transcriptome-based POD values for each paraben were determined as MtP (2.68 µM), EtP (3.85 µM), and PrP (1.4 µM). This suggests that different molecular perturbations initiated at similar concentrations determined the extent and toxicity outcome differently. Our findings provide insight into better understanding the differential developmental neurotoxicity mechanisms of parabens.


Assuntos
Poluentes Ambientais , Parabenos , Animais , Parabenos/análise , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Poluentes Ambientais/análise , Perfilação da Expressão Gênica
15.
Arch Toxicol ; 97(11): 2903-2917, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37665362

RESUMO

Omics techniques have been increasingly recognized as promising tools for Next Generation Risk Assessment. Targeted metabolomics offer the advantage of providing readily interpretable mechanistic information about perturbed biological pathways. In this study, a high-throughput LC-MS/MS-based broad targeted metabolomics system was applied to study nitrofurantoin metabolic dynamics over time and concentration and to provide a mechanistic-anchored approach for point of departure (PoD) derivation. Upon nitrofurantoin exposure at five concentrations (7.5 µM, 15 µM, 20 µM, 30 µM and 120 µM) and four time points (3, 6, 24 and 48 h), the intracellular metabolome of HepG2 cells was evaluated. In total, 256 uniquely identified metabolites were measured, annotated, and allocated in 13 different metabolite classes. Principal component analysis (PCA) and univariate statistical analysis showed clear metabolome-based time and concentration effects. Mechanistic information evidenced the differential activation of cellular pathways indicative of early adaptive and hepatotoxic response. At low concentrations, effects were seen mainly in the energy and lipid metabolism, in the mid concentration range, the activation of the antioxidant cellular response was evidenced by increased levels of glutathione (GSH) and metabolites from the de novo GSH synthesis pathway. At the highest concentrations, the depletion of GSH, together with alternations reflective of mitochondrial impairments, were indicative of a hepatotoxic response. Finally, a metabolomics-based PoD was derived by multivariate PCA using the whole set of measured metabolites. This approach allows using the entire dataset and derive PoD that can be mechanistically anchored to established key events. Our results show the suitability of high throughput targeted metabolomics to investigate mechanisms of hepatoxicity and derive point of departures that can be linked to existing adverse outcome pathways and contribute to the development of new ones.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nitrofurantoína , Humanos , Nitrofurantoína/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica , Glutationa , Doença Hepática Induzida por Substâncias e Drogas/etiologia
16.
J Hazard Mater ; 459: 132211, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572605

RESUMO

Soman, a warfare nerve agent, poses a significant threat by inducing severe brain damage that often results in death. Nonetheless, our understanding of the biological changes underlying persistent neurocognitive dysfunction caused by low dosage of soman remains limited. This study used mice to examine the effects of different doses of soman over time. Phosphoproteomic analysis of the mouse brain is the first time to be used to detect toxic effects of soman at such low or ultra-low doses, which were undetectable based on measuring the activity of acetylcholinesterase at the whole-animal level. We also found that phosphoproteome alterations could accurately track the soman dose, irrespective of the sampling time. Moreover, phosphoproteome revealed a rapid and adaptive cellular response to soman exposure, with the points of departure 8-38 times lower than that of acetylcholinesterase activity. Impaired long-term potentiation was identified in phosphoproteomic studies, which was further validated by targeted quantitative proteomics, immunohistochemistry, and immunofluorescence analyses, with significantly increased levels of phosphorylation of protein phosphatase 1 in the hippocampus following soman exposure. This increase in phosphorylation inhibits long-term potentiation, ultimately leading to long-term memory dysfunction in mice.


Assuntos
Agentes Neurotóxicos , Soman , Camundongos , Animais , Soman/toxicidade , Acetilcolinesterase/metabolismo , Potenciação de Longa Duração , Hipocampo , Inibidores da Colinesterase
17.
Arch Toxicol ; 97(9): 2303-2328, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37402810

RESUMO

Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.


Assuntos
Dano ao DNA , Mutagênicos , Mutagênicos/toxicidade , Mutagênicos/análise , DNA , Medição de Risco , Testes de Mutagenicidade/métodos
18.
J Hazard Mater ; 457: 131714, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37263023

RESUMO

The molecular mechanism of perfluorobutanesulfonic acid (PFBS), an alternative to legacy perfluorooctanesulfonic acid (PFOS), is not fully understood yet. Therefore, we conducted a developmental toxicity evaluation on zebrafish embryos exposed to PFBS and PFOS and assessed neurobehavioral changes at concentrations below each point of departure (POD) determined by embryonic mortality. Using transcriptomics, proteomics, and metabolomics, biomolecular perturbations in response to PFBS were profiled and then integrated for comparison with those for PFOS. Although PFBS (7525.47 µM POD) was approximately 700 times less toxic than PFOS (11.42 µM POD), altered neurobehavior patterns and affected kinds of endogenous neurochemicals were similar between PFBS and PFOS at the corresponding POD-based concentrations. Multi-omics analysis revealed that the PFBS neurotoxicity mechanism was associated with oxidative stress, lipid metabolism, and glycolysis/glucogenesis. The commonalities in developmental neurotoxicity-related mechanisms between PFBS and PFOS interconnected by knowledge-based integration of multi-omics included the calcium signaling pathway, lipid homeostasis, and primary bile acid biosynthesis. Despite being less toxic than PFOS, PFBS exhibited similar dysregulated molecular mechanisms, suggesting that chain length differences do not affect the intrinsic toxicity mechanism. Overall, carefully managing potential toxicity of PFBS can secure its status as an alternative to PFOS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Peixe-Zebra , Multiômica , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Fluorocarbonos/análise
19.
Sci Total Environ ; 895: 165209, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391155

RESUMO

Dose-dependent functional genomics approach has shown great advantage in identifying the molecular initiating event (MIE) of chemical toxification and yielding point of departure (POD) at genome-wide scale. However, POD variability and repeatability derived from experimental design (settings of dose, replicate number, and exposure time) has not been fully determined. In this work, we evaluated POD profiles perturbed by triclosan (TCS) using dose-dependent functional genomics approach in Saccharomyces cerevisiae at multiple time points (9 h, 24 h and 48 h). The full dataset (total 9 concentrations with 6 replicates per treatment) at 9 h was subsampled 484 times to generate subsets of 4 dose groups (Dose A - Dose D with varied concentration range and spacing) and 5 replicate numbers (2 reps - 6 reps). Firstly, given the accuracy of POD and the experimental cost, the POD profiles from 484 subsampled datasets demonstrated that the Dose C group (space narrow at high concentrations and wide dose range) with three replicates was best choice at both gene and pathway levels. Secondly, the variability of POD was found to be relatively robustness and stability across different experimental designs, but POD was more dependent on the dose range and interval than the number of replicates. Thirdly, MIE of TCS toxification was identified to be the glycerophospholipid metabolism pathway at all-time points, supporting the ability of our approach to accurately recognize MIE of chemical toxification at both short- and long-term exposure. Finally, we identified and validated 13 key mutant strains involved in MIE of TCS toxification, which could serve as biomarkers for TCS exposure. Taken together, our work evaluated the repeatability of dose-dependent functional genomics approach and the variability of POD and MIE of TCS toxification, which will benefit the experimental design for future dose-dependent functional genomics study.


Assuntos
Triclosan , Genômica
20.
ALTEX ; 40(4): 571-583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074977

RESUMO

Skin sensitizer potency assessment based on new approach methodologies is key to deriving a point of departure (PoD) for risk assessment. Regression models to predict a PoD based on OECD-validated in vitro tests and trained on local lymph node assay (LLNA) data were previously presented, and results from human tests were recently compiled. To integrate both data sources, the Reference Chemical Potency List (RCPL), which provides potency values (PV) for 33 chemicals integrating LLNA and human data in a structured weight-of-evidence approach, was developed. When calculating regression models vs PV or LLNA data, different weights for the input parameters were noted. As the RCPL is based on too few chemicals to train robust statistical models, the list of human data was extended to a larger set of PV (n = 139) with associated in vitro data. This database was used to retrain the regression models and to compare regression models trained vs (i) LLNA, (ii) PV or (iii) human DSA04 values. Using the PV as a target, predictive models of similar predictivity to the LLNA-based models were obtained, which mainly differ in a lesser weight of cytotoxicity and a higher weight of cell activation and reactivity parameters. Analysis of the human DSA04 dataset indicates a similar pattern but also shows that the human dataset is too small and biased to be a key dataset for potency prediction. Hence, an enlarged set of PV values appears to be a complementary tool to train predictive models next to an LLNA-only database.


Assuntos
Dermatite Alérgica de Contato , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Ensaio Local de Linfonodo , Bases de Dados Factuais , Modelos Estatísticos , Pele , Alérgenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA