RESUMO
Environmental monitoring and remediation often requires the collection of harmful substances from aqueous solutions. Absorption with solids is a useful technique for binding such substances even at very low concentration levels. Many of these contaminants are weak acids or bases. Some novel, nonionic polymeric sorbents, such as hypercrosslinked polymers or polymers with balanced hydrophilic-lipophilic properties (HLB) have been found to bind weak acids and bases with high distribution coefficients even at pH values where these compounds are almost completely ionized (typically near pH 7). To understand this phenomenon and its practical consequences, we have experimentally studied the adsorption of ionizable weak acids and bases as a function of pH and ionic strength on a the OASIS® HLB sorbent. Not surprisingly, the ionic forms of the weak acids and bases were found to be much less bound in the aqueous solution than their neutral forms. In spite of this, OASIS® HLB binds weak acids and bases around pH 7 considerably better than typical hydrophobic sorbents. The high overall distribution coefficients around pH 7 could be explained by two factors. One is that on OASIS® HLB, and on some other novel polymeric sorbents, the binding constant of the moderately hydrophobic neutral form is on the order of 100,000, i.e., much higher than on typical hydrophobic sorbents. Thus, even if the proportion of the neutral form in solution is only around 1% near pH 7, the adsorption of the neutral form is still significant. On the other hand, the binding of the apparently hydrophilic ionized forms occurs with distribution coefficients well above 100. The distribution coefficient of the ionic form appears to depend on ionic strength and the presence of competing ions. Adsorption of the ionic forms is found to be very similar to the adsorption of ionic surfactants. The pH dependence of the total adsorption of neutral and ionic forms together, is found to be steep around pH 7, and therefore the varying pH of natural waters may strongly influence the binding efficiency in practical applications, such as the collection (concentration) of contaminants or their passive sampling.
RESUMO
Detection of polar organic compounds (POCs) using gas chromatography (GC) is not straightforward due to high polarity, hydrophilicity, and low volatility of POCs. In this study, we report a tandem microwave-assisted derivatization method combined with salting-out assisted liquid-liquid microextraction (SALLME) to modify successively the polar groups of POCs in protic and aprotic solvents. Biothiols (cysteine and homocysteine) served as a proof of concept for this method because they possess three polar groups (thiol, amine, and carboxyl); the derivatizing reagent was 3,4,5-trifluorobenzyl bromide (Br-TFB) for alkylation. The solubility of the POCs in the protic or aprotic reaction medium affected the number of TFB molecules attached. Using the tandem derivatization with Br-TFB, the thiol and amine groups of biothiols were alkylated in the protic system, and the carboxylic groups of biothiols were alkylated in the aprotic system. The developed method was then successfully applied to measure biothiols in human urine. Because of the complex urine matrix and the lack of urine samples without endogenous biothiols, the standard addition method was utilized to avoid the matrix effect, check the recovery, and calculate the initial biothiol content in the urine. Regarding the linearity of the standard addition curves, the coefficient of determination was >0.996, and the linear regression showed satisfactory reproducibility with a relative standard deviation <3.9% for the slope and <8.8% for the intercept. The levels of cysteine and homocysteine in healthy human urine ranged from 28.8 to 111µmolL-1 and from 1.28 to 3.73µmolL-1, respectively. The proposed method effectively increased the sensitivity of GC-MS assays of water-soluble compounds in human urine.