Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(36): e2407010, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011780

RESUMO

Miniaturized polarimetric photodetectors based on anisotropic two-dimensional materials attract potential applications in ultra-compact polarimeters. However, these photodetectors are hindered by the small polarization ratio values and complicated artificial structures. Here, a novel polarization photodetector based on in-sublattice carrier transition in the CdSb2Se3Br2/WSe2 heterostructure, with a giant and reconfigurable PR value, is demonstrated. The unique periodic sublattice structure of CdSb2Se3Br2 features an in-sublattice carrier transition preferred along Sb2Se3 chains. Leveraging on the in-sublattice carrier transition in the CdSb2Se3Br2/WSe2 heterostructure, gate voltage has an anisotropic modulation effect on the band alignment of heterostructure along sublattice. Consequently, the heterostructure exhibits a polarization-tunable photo-induced threshold voltage shift, which provides reconfigurable PR values from positive (unipolar regime) to negative (bipolar regime), covering all possible numbers (1→+∞/-∞→-1). Using this anisotropic photovoltaic effect, gate-tunable polarimetric imaging is successfully implemented. This work provides a new platform for developing next-generation highly polarimetric optoelectronics.

2.
Small ; 19(33): e2303335, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154239

RESUMO

Van der Waals heterojunction (vdWs) of 2D materials with integrated or extended superior characteristics, opening up new opportunities in functional electronic and optoelectric device applications. Exploring methods to achieve multifunctional vdWs heterojunction devices is one of the most promising prospects in this area. Herein, a diverse function of forward rectifying diode, Zener tunneling diode, and backward rectifying diodes are realized in GeAs/ReS2 heterojunction by modulating the doping level of GeAs. The tunneling diode presents an interesting trend forward negative differential resistance (NDR) behavior which may facilitate the application of multi-value logic. More importantly, the GeAs/ReS2 forward rectifying diode exhibits highly sensitive photodetection in the wide-spectrum range up to 1550 nm corresponding to a short-wave infrared (SWIR) region. In addition, as two strong anisotropic 2D materials of GeAs and ReS2 , the heterojunction exhibits strong polarization-sensitive photodetection behavior with a dichroic photocurrent ratio of 1.7. This work provides an effective strategy to achieve multifunctional 2D vdW heterojunction devices and develops more possibilities to broaden their functionalities and applications.

3.
Adv Mater ; 34(18): e2107739, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35077604

RESUMO

Polarizers are ubiquitous components in current optoelectronic devices as displays or photographic cameras. Yet, control over light polarization is an unsolved challenge, since the main drawback of the existing display technologies is the significant optical losses. In such a context, organometal halide perovskites (OMHP) can play a decisive role given their flexible synthesis with tunable optical properties such as bandgap and photoluminescence, and excellent light emission with a low non-radiative recombination rate. Therefore, along with their outstanding electrical properties have elevated hybrid perovskites as the material of choice in photovoltaics and optoelectronics. Among the different OMHP nanostructures, nanowires and nanorods have lately arisen as key players in the control of light polarization for lighting or detector applications. Herein, the fabrication of highly aligned and anisotropic methylammonium lead iodide perovskite nanowalls by glancing-angle deposition, which is compatible with most substrates, is presented. Their high alignment degree provides the samples with anisotropic optical properties such as light absorption and photoluminescence. Furthermore, their implementation in photovoltaic devices provides them with a polarization-sensitive response. This facile vacuum-based approach embodies a milestone in the development of last-generation polarization-sensitive perovskite-based optoelectronic devices such as lighting appliances or self-powered photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA