Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plants (Basel) ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891270

RESUMO

Understanding the regulation of autotetraploid sterility is essential for harnessing the strong advantages in genomic buffer capacity, biodiversity, and heterosis of autotetraploid rice. miRNAs play crucial roles in fertility regulation, yet information about their reproductive roles and target genes in tetraploid rice remains limited. Here, we used three tetraploid lines, H1 (fertile), HF (fertile), and LF (sterile), to investigate cytological features and identify factors associated with autotetraploid sterility. LF showed abnormal meiosis, resulting in low pollen fertility and viability, ultimately leading to scarce fertilization and a low-seed setting compared to H1 and HF. RNA-seq revealed 30 miRNA-candidate target pairs related to autotetraploid pollen sterility. These pairs showed opposite expression patterns, with differential expression between fertile lines (H1 and HF) and the sterile line (LF). qRT-PCR confirmed that miR9564, miR528, and miR27874 were highly expressed in the anthers of H1 and HF but not in LF, while opposite results were obtained in their targets (ARPS, M2T, and OsRPC53). Haplotype and expression pattern analyses revealed that ARPS was specifically expressed in lines with the same haplotype of MIR9564 (the precursor of miR9564) as LF. Furthermore, the Dual-GFP assay verified that miR9564 inhibited the fluorescence signal of ARPS-GFP. The over-expression of ARPS significantly decreased the seed setting rate (59.10%) and pollen fertility (50.44%) of neo-tetraploid rice, suggesting that ARPS plays important roles in autotetraploid pollen sterility. This study provides insights into the cytological characteristic and miRNA expression profiles of tetraploid lines with different fertility, shedding light on the role of miRNAs in polyploid rice.

2.
Front Plant Sci ; 15: 1366986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576779

RESUMO

The eIF6 proteins are distributed extensively in eukaryotes and play diverse and essential roles. The bona fide eIF6 protein in Arabidopsis, At-eIF6;1, is essential for embryogenesis. However, the role of eIF6 proteins in rice growth and development remains elusive and requires further investigation. Here, we characterized the functions of OseIF6.1, which is homologous to At-eIF6;1. OseIF6.1 encodes an eukaryotic translation initiation factor with a conserved eIF6 domain. The knockdown of OseIF6.1 resulted in a decrease in grain length and pollen sterility, whereas the overexpression of OseIF6.1 displayed opposite phenotypes. Further studies revealed that OseIF6.1 regulates grain shape by influencing cell expansion and proliferation. In addition, OseIF6.1 interacts with OsNMD3, which is a nuclear export adaptor for the 60S ribosomal subunit. The knockdown of OsNMD3 in plants exhibited reduced fertility and seed setting. Therefore, our findings have significantly enriched the current understanding of the role of OseIF6.1 in rice growth and development.

3.
Front Plant Sci ; 15: 1344928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379952

RESUMO

Introduction: Wheat is a staple food crop for over one-third of the global population. However, the stability of wheat productivity is threatened by heat waves associated with climate change. Heat stress at the reproductive stage can result in pollen sterility and failure of grain development. Methods: This study used transcriptome data analysis to explore the specific expression of long non-coding RNAs (lncRNAs) in response to heat stress during pollen development in four wheat cultivars. Results and discussion: We identified 11,054 lncRNA-producing loci, of which 5,482 lncRNAs showed differential expression in response to heat stress. Heat-responsive lncRNAs could target protein-coding genes in cis and trans and in lncRNA-miRNA-mRNA regulatory networks. Gene ontology analysis predicted that target protein-coding genes of lncRNAs regulate various biological processes such as hormonal responses, protein modification and folding, response to stress, and biosynthetic and metabolic processes. We also noted some paired lncRNA/protein-coding gene modules and some lncRNA-miRNA-mRNA regulatory modules shared in two or more wheat cultivars. These modules were related to regulating plant responses to heat stress, such as heat-shock proteins and transcription factors, and protein domains, such as MADS-box, Myc-type, and Alpha crystallin/Hsp20 domain. Conclusion: Our results provide the basic knowledge and molecular resources for future functional studies investigating wheat reproductive development under heat stress.

4.
Front Plant Sci ; 14: 1229870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528969

RESUMO

We aimed to investigate the genetic defects related to pollen development and infertility in NY2, a novel tetraploid rice germplasm known as Neo-tetraploid rice. This rice variety was created through the crossbreeding and selective breeding of various autotetraploid rice lines and has previously shown high fertility. Our previous research has revealed that the NY2 gene, encoding a eukaryotic translation initiation factor 3 subunit E, regulates pollen fertility. However, the underlying mechanism behind this fertility is yet to be understood. To shed light on this matter, we performed a combined cytological and transcriptome analysis of the NY2 gene. Cytological analysis indicated that ny2 underwent abnormal tapetal cells, microspore, and middle layer development, which led to pollen abortion and ultimately to male sterility. Genetic analysis revealed that the F1 plants showed normal fertility and an obvious advantage for seed setting compared to ny2. Global gene expression analysis in ny2 revealed a total of 7545 genes were detected at the meiosis stage, and 3925 and 3620 displayed upregulation and downregulation, respectively. The genes were significantly enriched for the gene ontology (GO) term "carbohydrate metabolic process. Moreover, 9 genes related to tapetum or pollen fertility showed down-regulation, such as OsABCG26 (ATP Binding Cassette G26), TMS9-1 (Thermosensitive Male Sterility), EAT1 (Programmed cell death regulatory), KIN14M (Kinesin Motor), OsMT1a (Metallothionein), and OsSTRL2 (Atypical strictosidine synthase), which were validated by qRT-PCR. Further analyses of DEGs identified nine down-regulated transcription factor genes related to pollen development. NY2 is an important regulator of the development of tapetum and microspore. The regulatory gene network described in this study may offer important understandings into the molecular processes that underlie fertility control in tetraploid rice.

5.
Plant Reprod ; 36(3): 273-284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37227496

RESUMO

Hybridization plays an indispensable role in creating the diversity associated with plant evolution and genetic improvement of crops. Production of hybrids requires control of pollination and avoidance of self-pollination for species that are predominantly autogamous. Hand emasculation, male sterility genes or male gametocides have been used in several plant species to induce pollen sterility. However, in cowpea (Vigna unguiculata (L.) Walp), a self-pollinated cleistogamous dryland crop, only hand emasculation is used, but it is tedious and time-consuming. In this study, male sterility was effectively induced in cowpea and two dicotyledonous model species (Arabidopsis thaliana (L.) Heynh. and Nicotiana benthamiana Domin) using trifluoromethanesulfonamide (TFMSA). Pollen viability assays using Alexander staining showed that 30 ml of 1000 mg/l TFMSA with two-time treatments of one-week interval at the early stage of the reproductive phase under field or greenhouse conditions induced 99% pollen sterility in cowpea. TFMSA treatment induced non-functional pollen in diploid A. thaliana at two-time treatment of 10 ml of 125-250 mg/l per plant and N. benthamiana at two-time treatment of 10 ml of 250-1000 mg/l per plant. TFMSA-treated cowpea plants produced hybrid seeds when used as the female parent in crosses with non-treated plants used as male parents, suggesting that TFMSA had no effect on female functionality in cowpea. The ease of TFMSA treatment and its effectiveness to induce pollen sterility in a wide range of cowpea genotypes, and in the two model plant species tested in this study, may expand the scope of techniques for rapid pollination control in self-pollinated species, with potential applications in plant breeding and plant reproduction science.


Assuntos
Infertilidade Masculina , Magnoliopsida , Vigna , Masculino , Humanos , Vigna/genética , Melhoramento Vegetal , Magnoliopsida/genética , Genes de Plantas , Infertilidade Masculina/genética
6.
BMC Plant Biol ; 22(1): 582, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514007

RESUMO

BACKGROUND: Autotetraploid rice is a useful germplasm for the breeding of polyploid rice; however, low fertility is a major hindrance for its utilization. Neo-tetraploid rice with high fertility was developed from the crossing of different autotetraploid rice lines. Our previous research showed that the mutant (ny1) of LOC_Os07g32406 (NY1), which was generated by CRISPR/Cas9 knock-out in neo-tetraploid rice, showed low pollen fertility, low seed set, and defective chromosome behavior during meiosis. However, the molecular genetic mechanism underlying the fertility remains largely unknown. RESULTS: Here, cytological observations of the NY1 mutant (ny1) indicated that ny1 exhibited abnormal tapetum and middle layer development. RNA-seq analysis displayed a total of 5606 differentially expressed genes (DEGs) in ny1 compared to wild type (H1) during meiosis, of which 2977 were up-regulated and 2629 were down-regulated. Among the down-regulated genes, 16 important genes associated with tapetal development were detected, including EAT1, CYP703A3, CYP704B2, DPW, PTC1, OsABCG26, OsAGO2, SAW1, OsPKS1, OsPKS2, and OsTKPR1. The mutant of EAT1 was generated by CRISPR/Cas9 that showed abnormal tapetum and pollen wall formation, which was similar to ny1. Moreover, 478 meiosis-related genes displayed down-regulation at same stage, including 9 important meiosis-related genes, such as OsREC8, OsSHOC1, SMC1, SMC6a and DCM1, and their expression levels were validated by qRT-PCR. CONCLUSIONS: Taken together, these results will aid in identifying the key genes associated with pollen fertility, which offered insights into the molecular mechanism underlying pollen development in tetraploid rice.


Assuntos
Oryza , Oryza/metabolismo , Tetraploidia , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Melhoramento Vegetal , Poliploidia
7.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683004

RESUMO

Glycoside hydrolase family 9 (GH9) is a key member of the hydrolase family in the process of cellulose synthesis and hydrolysis, playing important roles in plant growth and development. In this study, we investigated the phenotypic characteristics and gene expression involved in pollen fertility conversion and anther dehiscence from a genomewide level. In total, 74 wheat GH9 genes (TaGH9s) were identified, which were classified into Class A, Class B and Class C and unevenly distributed on chromosomes. We also investigated the gene duplication and reveled that fragments and tandem repeats contributed to the amplification of TaGH9s. TaGH9s had abundant hormone-responsive elements and light-responsive elements, involving JA-ABA crosstalk to regulate anther development. Ten TaGH9s, which highly expressed stamen tissue, were selected to further validate their function in pollen fertility conversion and anther dehiscence. Based on the cell phenotype and the results of the scanning electron microscope at the anther dehiscence period, we found that seven TaGH9s may target miRNAs, including some known miRNAs (miR164 and miR398), regulate the level of cellulose by light and phytohormone and play important roles in pollen fertility and anther dehiscence. Finally, we proposed a hypothesis model to reveal the regulation pathway of TaGH9 on fertility conversion and anther dehiscence. Our study provides valuable insights into the GH9 family in explaining the male sterility mechanism of the wheat photo-thermo-sensitive genetic male sterile (PTGMS) line and generates useful male sterile resources for improving wheat hybrid breeding.


Assuntos
MicroRNAs , Triticum , Celulose/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Melhoramento Vegetal , Pólen/metabolismo , Triticum/metabolismo
8.
Plants (Basel) ; 11(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631747

RESUMO

Mutagenic effectiveness and efficiency are the most important factors determining the success of mutation breeding, a coherent tool for quickly enhancing genetic diversity in crops. However, conclusive evidence of using an effective and efficient dose of gamma (γ) rays and sodium azide (SA) for genetic improvement is scant. The present study assesses genetic diversity in M2 mutants of cowpea and evaluates mutagenic effectiveness and efficiency of the single and combination doses of γ rays and SA. In M0 generation, 7200 M1 seeds obtained by SA treatment (0.01-0.1%) and γ irradiation (100-1000 Gy) at a dose rate of 11.58 Gy/min were sown to raise M1 generation. A total of 57,620 M2 seeds were generated from the M1 generation of two varieties-Gomati VU-89 and Pusa-578, from which 47,650 seeds germinated. Moreover, plants (38,749) that survived were screened for chlorophyll and morphological mutations. Among the mutagens, SA followed by γ rays + SA and γ rays was most effective in inducing higher frequency and a broader spectrum of chlorophyll mutants. A wide range of morphological mutants affecting every growth stage was recorded with the highest frequency in 400 Gy γ rays + 0.04% SA treatment. These morphological mutants with desirable agronomic traits represent a valuable genetic resource for future breeding programs. This study revealed the potency of γ rays and SA in increasing genetic diversity and demonstrated the successful conduct of induced mutagenesis in the cowpea.

9.
Front Genet ; 13: 819849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368702

RESUMO

Global environmental changes with more extreme episodes of heat waves are major threats to agricultural productivity. Heat stress in spring affects the reproductive stage of maize, resulting in tassel blast, pollen abortion, poor pollination, reduced seed set, barren ears and ultimately yield loss. As an aneamophelous crop, maize has a propensity for pollen abortion under heat stress conditions. To overcome the existing challenges of heat stress and pollen abortion, this study utilized a broad genetic base of maize germplasm to identify superior alleles to be utilized in breeding programs. A panel of 375 inbred lines was morpho-physiologically screened under normal and heat stress conditions in two locations across two consecutive planting seasons, 2017 and 2018. The exposure of pollen to high temperature showed drastic decline in pollen germination percentage. The average pollen germination percentage (PGP) at 35 and 45°C was 40.3% and 9.7%, respectively, an average decline of 30.6%. A subset of 275 inbred lines were sequenced using tunable genotyping by sequencing, resulting in 170,098 single nucleotide polymorphisms (SNPs) after filtration. Genome wide association of PGP in a subset of 122 inbred lines resulted in ten SNPs associated with PGP35°C (p ≤ 10-5), nine with PGP45°C (p ≤ 10-6-10-8) and ten SNPs associated with PGP ratio (p ≤ 10-5). No SNPs were found to be in common across PGP traits. The number of favorable alleles possessed by each inbred line for PGP35°C, PGP45°C, and the PGP ratio ranged between 4 and 10, 3-13 and 5-13, respectively. In contrast, the number of negative alleles for these traits ranged between 2 and 8, 3-13 and 3-13, respectively. Genetic mapping of yield (adjusted weight per plant, AWP-1) and flowering time (anthesis-silking interval, ASI) in 275 lines revealed five common SNPs: three shared for AWP-1 between normal and heat stress conditions, one for ASI between conditions, and one SNP, CM007648.1-86615409, was associated with both ASI and AWP-1. Variety selection can be performed based on these favorable alleles for various traits. These marker trait associations identified in the diversity panel can be utilized in breeding programs to improve heat stress tolerance in maize.

10.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409103

RESUMO

Photoperiod and thermo-sensitive genic male sterile (PTGMS) rice is an important resource for two line hybrid rice production. The SQUAMOSA-promoter binding, such as the (SPL) gene family, encode the plant specific transcription factors that regulate development and defense responses in plants. However, the reports about SPLs participating in male fertility regulation are limited. Here, we identified 19 OsSPL family members and investigated their involvement in the fertility regulation of the PTGMS rice lines, PA2364S and PA2864S, with different fertility transition temperatures. The results demonstrated that OsSPL2, OsSPL4, OsSPL16 and OsSPL17 affect male fertility in response to temperature changes through the MiR156-SPL module. WGCNA (weighted gene co-expression network analysis) revealed that CHI and APX1 were co-expressed with OsSPL17. Targeted metabolite and flavonoid biosynthetic gene expression analysis revealed that OsSPL17 regulates the expression of flavonoid biosynthesis genes CHI, and the up regulation of flavanones (eriodictvol and naringenin) and flavones (apigenin and luteolin) content contributed to plant fertility. Meanwhile, OsSPL17 negatively regulates APX1 to affect APX (ascorbate peroxidase) activity, thereby regulating ROS (reactive oxygen species) content in the tapetum, controlling the PCD (programmed cell death) process and regulating male fertility in rice. Overall, this report highlights the potential role of OsSPL for the regulation of male fertility in rice and provides a new insight for the further understanding of fertility molecular mechanisms in PTGMS rice.


Assuntos
Oryza , Fertilidade/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fotoperíodo , Temperatura
11.
Sci China Life Sci ; 65(6): 1235-1247, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34767152

RESUMO

Timely programmed cell death (PCD) of the tapetum supplying nutrients to microspores is a prerequisite for normal pollen development. Here we identified a unique mutant of rice (Oryza sativa L.), pollen sterility (post), which showed aborted pollens accompanied with extra-large husks. Due to failure of timely PCD of tapetal cells, post exhibited abnormal pollen wall patterning and defective pollen grains. By map-based cloning, we identified a causal gene, POST, encoding a novel protein which is ubiquitously localized in cells. RNA in situ hybridization showed that POST is highly detected in the tapetum and microspores at stages 8 and 9. Transcriptome analysis indicated that POST could function as an important regulator of the metabolic process involved in tapetal PCD. Compared with wild-type rice, post mutant has an increased cell number resulting from elevated expression of cell cycle associated genes in grain husks. Overexpression of POST inhibits grain size in wild type, while appropriate expression of POST in post mutant can recover the seed fertility but has little effect on the large grains, illustrating that fine-tuning of POST expression could be a potential strategy for rice yield improvement. The connection between cell division and cell death conferred by POST provides novel insights into the understanding of the tapetal PCD process.


Assuntos
Infertilidade , Oryza , Apoptose/genética , Divisão Celular , Flores/genética , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo
12.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467721

RESUMO

Neo-tetraploid rice with high fertility is a useful germplasm for polyploid rice breeding, which was developed from the crossing of different autotetraploid rice lines. However, little information is available on the molecular mechanism underlying the fertility of neo-tetraploid rice. Here, two contrasting populations of tetraploid rice, including one with high fertility (hereafter referred to as JG) and another with low fertility (hereafter referred to as JD), were generated by crossing Huaduo 3 (H3), a high fertility neo-tetraploid rice that was developed by crossing Jackson-4x with 96025-4x, and Huajingxian74-4x (T452), a low fertility autotetraploid rice parent. Cytological, global genome sequencing-based bulked-segregant (BSA-seq) and CRISPR/Cas9 technology were employed to study the genes associated with pollen fertility in neo-tetraploid rice. The embryo sacs of JG and JD lines were normal; however, pollen fertility was low in JD, which led to scarce fertilization and low seed setting. Cytological observations displayed low pollen fertility (25.1%) and approximately 31.3 and 27.2% chromosome lagging at metaphase I and II, and 28.8 and 24.8% chromosome straggling at anaphase I and II in JD, respectively. BSA-seq of F2-3 generations and RNA-seq of F4 generation detected a common fragment, i.e., 18,915,234-19,500,000, at chromosome 7, which was comprised of 78 genes associated with fertility. Among 78 genes, 9 genes had been known to be involved in meiosis and pollen development. Two mutants ny1 (LOC_Os07g32406) and ny2 (LOC_Os07g32040) were generated by CRISPR/Cas9 knockout in neo-tetraploid rice, and which exhibited low pollen fertility and abnormal chromosome behavior. Our study revealed that two unknown genes, LOC_Os07g32406 (NY1) and LOC_Os07g32040 (NY2) play an important role in pollen development of neo-tetraploid rice and provides a new perspective about the genetic mechanisms of fertility in polyploid rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oryza/genética , Pólen/genética , Tetraploidia , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Meiose , Mutação , Oryza/fisiologia , Melhoramento Vegetal , Infertilidade das Plantas/genética , RNA-Seq
13.
Int J Mol Sci ; 21(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050591

RESUMO

Autotetraploid rice is a useful rice germplasm for polyploid rice breeding. However, low fertility limits its commercial production. A neo-tetraploid rice with high fertility was developed from the progenies of crossing between autotetraploid lines by our research group. Our previous study showed that a myeloblastosis (MYB) transcription factor, MOF1, might be associated with the pollen development in tetraploid rice. However, little information is available about its role in pollen development in tetraploid rice. Here, we identified a new haplotype of MOF1 from neo-tetraploid rice and marked it as MOF1a. Transcriptome and qRT-PCR analysis demonstrated that MOF1a highly expressed in anthers, and displayed differential expression in neo-tetraploid rice compared to tetraploid rice line with low pollen fertility. The mutant (mof1a) of MOF1a, which was generated by CRISPR/Cas9 knockout in neo-tetraploid rice, showed low pollen fertility, and also exhibited abnormal tapetum and middle layer development, and defective chromosome behaviors during meiosis. A total of 13 tapetal related genes were found to be up-regulated in meiotic anthers of MOF1a compared with wild type plants by RNA-seq analysis, including CYP703A3, PTC1, and OsABCG26, which had been demonstrated to affect tapetal development. Moreover, 335 meiosis-related genes displayed differential expression patterns at same stage, including nine important meiosis-related genes, such as metallothionein OsMT1a. These results demonstrated that MOF1a plays an important role in pollen development and provides a foundation for understanding the molecular mechanism underlying MOF1a in reproduction of tetraploid rice.


Assuntos
Edição de Genes , Regulação da Expressão Gênica de Plantas , Meiose/genética , Oryza/fisiologia , Desenvolvimento Vegetal/genética , Transcriptoma , Biomarcadores , Sistemas CRISPR-Cas , Cromossomos de Plantas , Fertilidade , Perfilação da Expressão Gênica , Imuno-Histoquímica , Pólen , Tetraploidia
14.
Front Plant Sci ; 11: 632420, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574828

RESUMO

Postzygotic reproductive isolation maintains species integrity and uniformity and contributes to speciation by restricting the free gene flow between divergent species. In this study we identify causal genes of two Mendelian factors S22A and S22B on rice chromosome 2 inducing F1 pollen sterility in hybrids between Oryza sativa japonica-type cultivar Taichung 65 (T65) and a wild relative of rice species Oryza glumaepatula. The causal gene of S22B in T65 encodes a protein containing DUF1668 and gametophytically expressed in the anthers, designated S22B_j. The O. glumaepatula allele S22B-g, allelic to S22B_j, possesses three non-synonymous substitutions and a 2-bp deletion, leading to a frameshifted translation at the S22B C-terminal region. Transcription level of S22B-j and/or S22B_g did not solely determine the fertility of pollen grains by genotypes at S22B. Western blotting of S22B found that one major band with approximately 46 kDa appeared only at the mature stage and was reduced on semi-sterile heterozygotes at S22B, implying that the 46 kDa band may associated in hybrid sterility. In addition, causal genes of S22A in T65 were found to be S22A_j1 and S22A_j3 encoding DUF1668-containing protein. The allele of a wild rice species Oryza meridionalis Ng at S22B, designated S22B_m, is a loss-of-function allele probably due to large deletion of the gene lacking DUF1668 domain and evolved from the different lineage of O. glumaepatula. Phylogenetic analysis of DUF1668 suggested that many gene duplications occurred before the divergence of current crops in Poaceae, and loss-of-function mutations of DUF1668-containing genes represent the candidate causal genetic events contributing to hybrid incompatibilities. The duplicated DUF1668-domain gene may provide genetic potential to induce hybrid incompatibility by consequent mutations after divergence.

15.
Tree Physiol ; 40(1): 108-118, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31340033

RESUMO

Tapiscia sinensis Oliv. (Tapisciaceae) has been proven to be a functional androdioecious species with both male and hermaphroditic individuals, and the pollen viability of males is far higher than that of hermaphrodites. To better understand the causes of the low pollen viability in hermaphroditic flowers, different stages of anther development were observed. We found that hermaphroditic flowers exhibit abnormal tapetum development, resulting in low pollen viability. To clarify the underlying molecular mechanism of abnormal tapetum development in hermaphrodites, quantitative real-time PCR analyses were performed. The results revealed that the expression levels of an important transcription factor for tapetum development and function, T. sinensis DYSFUNCTIONAL TAPETUM1 (TsDYT1), and its potential downstream regulatory genes T. sinensis DEFECTIVE in TAPETAL DEVELOPMENT and FUNCTION1 (TsTDF1), T. sinensis ABORTED MICROSPORE (TsAMS) and T. sinensis MALE STERILITY 1 (TsMS1) were all significantly downregulated in hermaphrodites compared with males at some key stages of anther development. The amino acid sequence similarity, expression pattern, gene structure and subcellular localization of these genes were analyzed, and the results indicated functional conservation between T. sinensis and homologues in Arabidopsis thaliana. Next, rapid amplification of cDNA end and thermal asymmetric interlaced PCR were employed to clone the full-length cDNA and promoter sequences of these genes, respectively. In addition, results of yeast two-hybrid analysis showed that TsDYT1 can form heterodimers with TsAMS, and yeast one-hybrid analysis demonstrated that TsDYT1 directly binds to the promoter regions of TsTDF1 and TsMS1. TsTDF1 can directly regulate expression of TsAMS, suggesting that a functionally conserved pathway exists between A. thaliana and T. sinensis to regulate tapetum development. In conclusion, the results suggest that abnormal expression of core transcription factors for tapetum development, including TsDYT1, TsTDF1, TsAMS and TsMS1, plays an important role in the abnormal development of the tapetum in T. sinensis hermaphrodites. Furthermore, a hermaphroditic tapetum with abnormal function causes the low pollen viability of hermaphroditic trees. Our results provide new insight into our understanding of the underlying mechanism of why pollen viability is much higher in males than hermaphrodites of the androdioecious tree T. sinensis.


Assuntos
Arabidopsis/genética , Árvores , Flores/genética , Regulação da Expressão Gênica de Plantas , Pólen
16.
Plant Physiol Biochem ; 141: 73-82, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132695

RESUMO

Polyploidy could increase the interactions of pollen sterility loci and Sb locus interaction cause higher pollen abortion than other loci. Therefore, we focused on the interaction at Sb pollen sterility locus in autotetraploid rice compared to diploid rice hybrid using the near-isogenic lines in the present study. Cytological observations indicated that interaction at Sb locus cause high pollen sterility (69.9%) and abnormal chromosome behavior (37.02%) at Metaphase II in autotetraploid rice hybrid. A total of 139 meiosis-related or meiosis stage-specific genes were detected in the autotetraploid rice hybrid harboring interaction at Sb locus and 27 of these meiosis-related or specific genes displayed significant down-regulation, including four pollen fertility related genes (Rad51, XRI1, PSS1 and MIL1). These results revealed a stronger interaction at Sb pollen sterility locus than other loci, which cause down-regulation of many important meiosis-related genes that were associated with higher pollen sterility in autotetraploid rice hybrids.


Assuntos
Cruzamentos Genéticos , Meiose/genética , Oryza/genética , Infertilidade das Plantas/genética , Pólen/genética , Alelos , Biologia Celular , Cromossomos de Plantas , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Heterozigoto , Tetraploidia , Transcriptoma
17.
Plant Methods ; 14: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29339970

RESUMO

BACKGROUND: Low pollen viability may limit grapevine yield under certain conditions, causing relevant economic losses to grape-growers. It is usually evaluated by the quantification of the number of viable and non-viable pollen grains that are present in a sample after an adequate pollen grain staining procedure. Although the manual counting of both types of grains is the simplest and most sensitive approach, it is a laborious and time-demanding process. In this regard, novel image-based approaches can assist in the objective, accurate and cost-effective phenotyping of this trait. RESULTS: Here, we introduce PollenCounter, an open-source macro implemented as a customizable Fiji tool for the high-throughput phenotyping of pollen viability. This tool splits RGB images of stained pollen grains into its primary channels, retaining red and green color fractionated images (which contain information on total and only viable pollen grains, respectively) for the subsequent isolation and counting of the regions of interest (pollen grains). This framework was successfully used for the analysis of pollen viability of a high number of samples collected in a large collection of grapevine cultivars. Results revealed a great genetic variability, from cultivars having very low pollen viability (like Corinto Bianco; viability: 14.1 ± 1.3%) to others with a very low presence of sterile pollen grains (Cuelga; viability: 98.2 ± 0.5%). A wide range of variability was also observed among several clones of cv. Tempranillo Tinto (from 97.9 ± 0.9 to 60.6 ± 5.9%, in the first season). Interestingly, the evaluation of this trait in a second season revealed differential genotype-specific sensitivity to environment. CONCLUSIONS: The use of PollenCounter is expected to aid in different areas, including genetics research studies, crop improvement and breeding strategies that need of fast, precise and accurate results. Considering its flexibility, it can be used not only in grapevine, but also in other species showing a differential staining of viable and non-viable pollen grains. The wide phenotypic diversity observed at a species level, together with the identification of specific cultivars and clones largely differing in this trait, pave the way of further analyses aimed to understand the physiological and genetic causes driving to male sterility in grapevine.

18.
Plant Biol (Stuttg) ; 20(3): 450-455, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29350475

RESUMO

Tree species distribution, and hence forest biodiversity, relies on the reproductive capacity of trees, which is currently affected by climate change. Drought-induced pollen sterility could increase as a consequence of more intense and more frequent droughts projected for temperate and Mediterranean regions, and threaten the sexual regeneration of trees in these regions. To evaluate this possibility, we examined the effect of long-term partial rainfall exclusion (-27% precipitation) on male reproductive development in holm oak, Quercus ilex, one of the most important and widespread tree species of the Mediterranean region. We examined anther area, pollen production, pollen abortion as well as viable pollen production in control and dry treatments. Microscopic examinations revealed significant differences in pollen development between trees in the dry and the control treatments, even though anthesis occurred before the onset of annual drought. Our results demonstrate that anthers collected from Q. ilex trees in the dry treatment, which experienced long-term increased drought stress especially during the summer, were the same size as anthers in the control treatment, but displayed 25% pollen abortion and almost 20% reduction in pollen production. Subsequently, the number of viable pollen grains in anthers from dry treatment was 35% less than in control. These results suggest a carry-over effect of drought stress on pollen production that could reduce the reproductive success of Q. ilex. The results have broad implications for better understanding of the determinants of tree reproduction by masting and anticipate the outcomes of expected drought increase in the Mediterranean on forest dynamics.


Assuntos
Pólen/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Desidratação , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Pólen/ultraestrutura
19.
Breed Sci ; 68(5): 561-570, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30697117

RESUMO

Enhancing salt stress tolerance is a key strategy for increasing global food production. We previously found that long-term salinity stress significantly reduced grain fertility in the salt-sensitive barley (Hordeum vulgare) accession, 'OUC613', but not in the salt-tolerant accession, 'OUE812', resulting in large differences in grain yield. Here, we examined the underlying causes of the difference in grain fertility between these accessions under long-term treatment with 150 or 200 mM NaCl from the seedling stage to harvest and identified quantitative trait loci (QTLs) for maintaining grain fertility. In an artificial pollination experiment of the two accessions, grain fertility was significantly reduced only in OUC613 plants produced using pollen from plants grown under NaCl stress, suggesting that the low grain fertility of OUC613 was mainly due to reduced pollen fertility. Using QTL-seq combined with exome-capture sequencing and composite interval mapping of recombinant inbred lines derived from a cross between OUE812 and OUC613, we identified a QTL (qRP-2Hb) for grain fertility on chromosome 2H. The QTL region includes two genes encoding an F-box protein and a TIFY protein that are associated with male sterility, highlighting the importance of this region for maintaining grain fertility under salt stress.

20.
Ann Bot ; 120(6): 967-977, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28961748

RESUMO

BACKGROUND AND AIMS: Tapiscia sinensis (Tapisciaceae) is a functional androdioecious species with both male and hermaphroditic individuals, and fruit ripening overlaps with flowering in the hermaphroditic individuals. Pollen vitality was lower in the hermaphrodites than in the males. Anther development requires nutrients, and carbohydrates are the basic nutrients; abnormal carbohydrate metabolism will result in pollen abortion. The aim of this research was to gain insight into the relationship between carbohydrate metabolism and the weakening of the male function of hermaphroditic flowers in T. sinensis. METHODS: Observation of morphology and microscopic and sub-microscopic structures was carried out. Sugar measurements and quantitative real-time PCR analysis were performed for the genes related to sugar metabolism and transport in the development of anthers in both males and hermaphrodites. The expression pattern of Cell wall invertase 2 (CWI2) and Sucrose transporter 2 (ST2) was explored by in situ hybridization. KEY RESULTS: At the vacuolate microspore (VM) stage, polysaccharides accumulated in the connective tissue of the hermaphroditic anthers, and the levels of total soluble sugar, sucrose and starch in the hermaphroditic anthers were significantly lower than in the male anthers. Most of the hermaphroditic pollen grains were empty, with degradation of the cytoplasm, absence of an intine layer and defective exines. There was a significant differential expression between male and hermaphroditic flowers of several key genes that are involved in sugar metabolism, transport and intine development. CWI2 and ST2 were expressed in the tapetum and microspores. The expression of CWI2 was significantly lower in hermaphrodites than in the males. CONCLUSIONS: Fruit ripening overlaps with flowering, leading to a severe reproductive burden on the hermaphroditic individuals. The hermaphroditic flowers regulating carbohydrate metabolism and transport to affect resources are biased towards the female function to ensure reproduction, causing a deficiency in resources for the development of pollen; thus, the pollen viability is lower. This makes it easier for males to invade the hermaphroditic population and form a functional androdioecious breeding system.


Assuntos
Metabolismo dos Carboidratos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Rosales/genética , Rosales/metabolismo , Flores/genética , Flores/metabolismo , Organismos Hermafroditas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosales/crescimento & desenvolvimento , Árvores/genética , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA