Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679281

RESUMO

Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.

2.
Polymers (Basel) ; 13(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641111

RESUMO

Poly(ethylene 2,5-furandicarboxylate), PEF and poly(ethylene terephthalate), PET, are two polyesters with close chemical structures. It leads to similar thermal, mechanical and barrier properties. In order to optimize their stretching, a strategy based on the time/temperature principle is used. The building of master curves, in the linear visco-elastic domain, allows the identification of the experimental conditions for which the two materials are in the same physical state. The initial physical state of the materials is important as, to fit with the industrial constrains, the polymers must reach high level of deformation, and develop strain induced crystallization (SIC). In this paper, the screening of the forming range is described, as well as the mechanical response depending on the stretching settings. Moreover, the same mechanical response can exist for PEF and PET if the same gap from the α-relaxation exists.

3.
Polymers (Basel) ; 9(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30965693

RESUMO

Bio-based polyesters derived from 2,5-furandicarboxylic acid (FDCA), including poly (ethylene 2,5-furandicarboxylate) (PEF), poly(propylene 2,5-furandicarboxylate) (PPF), and poly(butylene 2,5-furandicarboxylate) (PBF) have been synthesized and modified with 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO). Copolyesters with increased glass transition temperature, good barrier and better mechanical properties, as well as higher transparency were reported in this work. The chemical structures, composition, and sequence distribution of the copolyesters were determined by ¹H NMR and 13C NMR. The degree of random (R) was close to 1 for all the copolyesters, indicating their random chemical structures. With the introduction of 10% CBDO units, the semi-crystalline PEF and PPF were changed into completely amorphous polyesters and the higher transparency was easily achieved. The glass transition temperature was increased from 87 °C for PEF to 91.1 °C for PETF-18, from 55.5 °C for PPF to 63.5 °C for PPTF-18, and from 39.0 °C for PBF to 43.5 °C for PBTF-18. The barrier properties investigation demonstrated that although the O2 and CO2 barrier of PEF/PPF/PBF were decreased by the addition of CBDO units, the modified copolyesters still showed good barrier properties.

4.
Polymers (Basel) ; 9(10)2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30965822

RESUMO

The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versatile and adaptable polymer chemical structures and to achieve target properties and functionalities. In this review, biobased polymers are categorized as those that are: (1) upgrades from biodegradable polylactides (PLA), polyhydroxyalkanoates (PHAs), and others; (2) analogous to petroleum-derived polymers such as bio-poly(ethylene terephthalate) (bio-PET); and (3) new biobased polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The recent developments and progresses concerning biobased polymers are described, and important technical aspects of those polymers are introduced. Additionally, the recent scientific achievements regarding high-spec engineering-grade biobased polymers are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA