Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Plant Sci ; 15: 1451839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224855

RESUMO

Tetrahydrofolate and its derivatives participate in one-carbon transfer reactions in all organisms. The cellular form of tetrahydrofolate (THF) is modified by multiple glutamate residues and polyglutamylation plays a key role in organellar and cellular folate homeostasis. In addition, polyglutamylation of THF is known to increase the binding affinity to enzymes in the folate cycle, many of which can utilize polyglutamylated THF as a substrate. Here, we use X-ray crystallography to provide a high-resolution view of interactions between the enzyme serine hydroxymethyltransferase (SHMT), which provides one carbon precursors for the folate cycle, and a polyglutamylated form of THF. Our 1.7 Å crystal structure of soybean SHMT8 in complex with diglutamylated 5-formyl-THF reveals, for the first time, a structural rearrangement of a loop at the entrance to the folate binding site accompanied by the formation of novel specific interactions between the enzyme and the diglutamyl tail of the ligand. Biochemical assays show that additional glutamate moieties on the folate ligand increase both enzyme stability and binding affinity. Together these studies provide new information on SHMT structure and function and inform the design of anti-folate agents.

2.
Curr Biol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270640

RESUMO

Controlling ciliary beating is essential for motility and signaling in eukaryotes. This process relies on the regulation of various axonemal proteins that assemble in stereotyped patterns onto individual microtubules of the ciliary structure. Additionally, each axonemal protein interacts exclusively with determined tubulin protofilaments of the neighboring microtubule to carry out its function. While it is known that tubulin post-translational modifications (PTMs) are important for proper ciliary motility, the mode and extent to which they contribute to these interactions remain poorly understood. Currently, the prevailing understanding is that PTMs can confer functional specialization at the level of individual microtubules. However, this paradigm falls short of explaining how the tubulin code can manage the complexity of the axonemal structure where functional interactions happen in defined patterns at the sub-microtubular scale. Here, we combine immuno-cryo-electron tomography (cryo-ET), expansion microscopy, and mutant analysis to show that, in motile cilia, tubulin glycylation and polyglutamylation form mutually exclusive protofilament-specific nanopatterns at a sub-microtubular scale. These nanopatterns are consistent with the distributions of axonemal dyneins and nexin-dynein regulatory complexes, respectively, and are indispensable for their regulation during ciliary beating. Our findings offer a new paradigm for understanding how different tubulin PTMs, such as glycylation, glutamylation, acetylation, tyrosination, and detyrosination, can coexist within the ciliary structure and specialize individual protofilaments for the regulation of diverse protein complexes. The identification of a ciliary tubulin nanocode by cryo-ET suggests the need for high-resolution studies to better understand the molecular role of PTMs in other cellular compartments beyond the cilium.

3.
EMBO J ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349846

RESUMO

Polyglutamylation is a reversible posttranslational modification that is catalyzed by enzymes of the tubulin tyrosine ligase-like (TTLL) family. Here, we found that TTLL11 generates a previously unknown type of polyglutamylation that is initiated by the addition of a glutamate residue to the free C-terminal carboxyl group of a substrate protein. TTLL11 efficiently polyglutamylates the Wnt signaling protein Dishevelled 3 (DVL3), thereby changing the interactome of DVL3. Polyglutamylation increases the capacity of DVL3 to get phosphorylated, to undergo phase separation, and to act in the noncanonical Wnt pathway. Both carboxy-terminal polyglutamylation and the resulting reduction in phase separation capacity of DVL3 can be reverted by the deglutamylating enzyme CCP6, demonstrating a causal relationship between TTLL11-mediated polyglutamylation and phase separation. Thus, C-terminal polyglutamylation represents a new type of posttranslational modification, broadening the range of proteins that can be modified by polyglutamylation and providing the first evidence that polyglutamylation can modulate protein phase separation.

4.
Adv Exp Med Biol ; 1452: 21-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805123

RESUMO

Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.


Assuntos
Microtúbulos , Metástase Neoplásica , Neoplasias Ovarianas , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Feminino , Microtúbulos/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico
5.
J Cell Sci ; 137(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205672

RESUMO

Tubulin polyglutamylation, catalysed by members of the tubulin tyrosine ligase-like (TTLL) protein family, is an evolutionarily highly conserved mechanism involved in the regulation of microtubule dynamics and function in eukaryotes. In the protozoan parasite Trypanosoma brucei, the microtubule cytoskeleton is essential for cell motility and maintaining cell shape. In a previous study, we showed that T. brucei TTLL6A and TTLL12B are required to regulate microtubule dynamics at the posterior cell pole. Here, using gene deletion, we show that the polyglutamylase TTLL1 is essential for the integrity of the highly organised microtubule structure at the cell pole, with a phenotype distinct from that observed in TTLL6A- and TTLL12B-depleted cells. Reduced polyglutamylation in TTLL1-deficient cells also leads to increased levels in tubulin tyrosination, providing new evidence for an interplay between the tubulin tyrosination and detyrosination cycle and polyglutamylation. We also show that TTLL1 acts differentially on specific microtubule doublets of the flagellar axoneme, although the absence of TTLL1 appears to have no measurable effect on cell motility.


Assuntos
Trypanosoma brucei brucei , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo
6.
Dev Cell ; 59(2): 199-210.e11, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38159567

RESUMO

Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.


Assuntos
Axonema , Caenorhabditis elegans , Animais , Camundongos , Axonema/metabolismo , Axonema/ultraestrutura , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Mamíferos , Microtúbulos/metabolismo , Movimento , Tubulina (Proteína)/metabolismo
7.
Dev Cell ; 58(23): 2641-2651.e6, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37890489

RESUMO

Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.


Assuntos
Axonema , Cílios , Humanos , Camundongos , Animais , Cílios/fisiologia , Células Epiteliais/fisiologia , Epitélio , Corioide , Mamíferos
8.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37519241

RESUMO

α- and ß-tubulin have an unstructured glutamate-rich region at their C-terminal tails (CTTs). The function of this region in cilia and flagella is still unclear, except that glutamates in CTTs act as the sites for post-translational modifications that affect ciliary motility. The unicellular alga Chlamydomonas possesses only two α-tubulin and two ß-tubulin genes, each pair encoding an identical protein. This simple gene organization might enable a complete replacement of the wild-type tubulin with its mutated version. Here, using CRISPR/Cas9, we generated mutant strains expressing tubulins with modified CTTs. We found that the mutant strain in which four glutamate residues in the α-tubulin CTT had been replaced by alanine almost completely lacked polyglutamylated tubulin and displayed paralyzed cilia. In contrast, the mutant strain lacking the glutamate-rich region of the ß-tubulin CTT assembled short cilia without the central apparatus. This phenotype is similar to mutant strains harboring a mutation in a subunit of katanin, the function of which has been shown to depend on the ß-tubulin CTT. Therefore, our study reveals distinct and important roles of α- and ß-tubulin CTTs in the formation and function of cilia.


Assuntos
Ácido Glutâmico , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Ácido Glutâmico/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Processamento de Proteína Pós-Traducional , Microtúbulos/metabolismo
9.
J Biol Chem ; 299(7): 104923, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321451

RESUMO

Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the ß-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than ß-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and ß2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.


Assuntos
Microtúbulos , Peptídeo Sintases , Tubulina (Proteína) , Animais , Encéfalo/metabolismo , Microtúbulos/metabolismo , Ácido Poliglutâmico/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Peptídeo Sintases/metabolismo
10.
Biomolecules ; 13(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37238654

RESUMO

As an important neurotransmitter, glutamate acts in over 90% of excitatory synapses in the human brain. Its metabolic pathway is complicated, and the glutamate pool in neurons has not been fully elucidated. Tubulin polyglutamylation in the brain is mainly mediated by two tubulin tyrosine ligase-like (TTLL) proteins, TTLL1 and TTLL7, which have been indicated to be important for neuronal polarity. In this study, we constructed pure lines of Ttll1 and Ttll7 knockout mice. Ttll knockout mice showed several abnormal behaviors. Matrix-assisted laser desorption/ionization (MALDI) Imaging mass spectrometry (IMS) analyses of these brains showed increases in glutamate, suggesting that tubulin polyglutamylation by these TTLLs acts as a pool of glutamate in neurons and modulates some other amino acids related to glutamate.


Assuntos
Ácido Glutâmico , Tubulina (Proteína) , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
11.
BMC Biol ; 21(1): 124, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226238

RESUMO

BACKGROUND: The axonemal microtubules of primary cilium undergo a conserved protein posttranslational modification (PTM) - polyglutamylation. This reversible procedure is processed by tubulin tyrosine ligase-like polyglutamylases to form secondary polyglutamate side chains, which are metabolized by the 6-member cytosolic carboxypeptidase (CCP) family. Although polyglutamylation modifying enzymes have been linked to ciliary architecture and motility, it was unknown whether they also play a role in ciliogenesis. RESULTS: In this study, we found that CCP5 expression is transiently downregulated upon the initiation of ciliogenesis, but recovered after cilia are formed. Overexpression of CCP5 inhibited ciliogenesis, suggesting that a transient downregulation of CCP5 expression is required for ciliation initiation. Interestingly, the inhibitory effect of CCP5 on ciliogenesis does not rely on its enzyme activity. Among other 3 CCP members tested, only CCP6 can similarly suppress ciliogenesis. Using CoIP-MS analysis, we identified a protein that potentially interacts with CCP - CP110, a known negative regulator of ciliogenesis, whose degradation at the distal end of mother centriole permits cilia assembly. We found that both CCP5 and CCP6 can modulate CP110 level. Particularly, CCP5 interacts with CP110 through its N-terminus. Loss of CCP5 or CCP6 led to the disappearance of CP110 at the mother centriole and abnormally increased ciliation in cycling RPE-1 cells. Co-depletion of CCP5 and CCP6 synergized this abnormal ciliation, suggesting their partially overlapped function in suppressing cilia formation in cycling cells. In contrast, co-depletion of the two enzymes did not further increase the length of cilia, although CCP5 and CCP6 differentially regulate polyglutamate side-chain length of ciliary axoneme and both contribute to limiting cilia length, suggesting that they may share a common pathway in cilia length control. Through inducing the overexpression of CCP5 or CCP6 at different stages of ciliogenesis, we further demonstrated that CCP5 or CCP6 inhibited cilia formation before ciliogenesis, while shortened the length of cilia after cilia formation. CONCLUSION: These findings reveal the dual role of CCP5 and CCP6. In addition to regulating cilia length, they also retain CP110 level to suppress cilia formation in cycling cells, pointing to a novel regulatory mechanism for ciliogenesis mediated by demodifying enzymes of a conserved ciliary PTM, polyglutamylation.


Assuntos
Carboxipeptidases , Cílios , Proteínas Associadas aos Microtúbulos , Células HEK293 , Humanos , Carboxipeptidases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Cílios/fisiologia , Microtúbulos
12.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982413

RESUMO

The cytosolic carboxypeptidase (CCP) 1 protein, encoded by CCP1, is expressed in cerebellar Purkinje cells (PCs). The dysfunction of CCP1 protein (caused by CCP1 point mutation) and the deletion of CCP1 protein (caused by CCP1 gene knockout) all lead to the degeneration of cerebellar PCs, which leads to cerebellar ataxia. Thus, two CCP1 mutants (i.e., Ataxia and Male Sterility [AMS] mice and Nna1 knockout [KO] mice) are used as disease models. We investigated the cerebellar CCP1 distribution in wild-type (WT), AMS and Nna1 KO mice on postnatal days (P) 7-28 to investigate the differential effects of CCP protein deficiency and disorder on cerebellar development. Immunohistochemical and immunofluorescence studies revealed significant differences in the cerebellar CCP1 expression in WT and mutant mice of P7 and P15, but no significant difference between AMS and Nna1 KO mice. Electron microscopy showed slight abnormality in the nuclear membrane structure of PCs in the AMS and Nna1 KO mice at P15 and significant abnormality with depolymerization and fragmentation of microtubule structure at P21. Using two CCP1 mutant mice strains, we revealed the morphological changes of PCs at postnatal stages and indicated that CCP1 played an important role in cerebellar development, most likely via polyglutamylation.


Assuntos
Ataxia Cerebelar , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Animais , Masculino , Camundongos , Ataxia/genética , Ataxia Cerebelar/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Células de Purkinje/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
EMBO J ; 42(5): e112101, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636822

RESUMO

Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive. Here, using in-vitro reconstitution, we determine how polyglutamylation generated by the two predominant neuronal polyglutamylases, TTLL1 and TTLL7, specifically modulates the activities of three major microtubule interactors: the microtubule-associated protein Tau, the microtubule-severing enzyme katanin and the molecular motor kinesin-1. We demonstrate that the unique modification patterns generated by TTLL1 and TTLL7 differentially impact those three effector proteins, thus allowing for their selective regulation. Given that our experiments were performed with brain tubulin from mouse models in which physiological levels and patterns of polyglutamylation were altered by the genetic knockout of the main modifying enzymes, our quantitative measurements provide direct mechanistic insight into how polyglutamylation could selectively control microtubule interactions in neurons.


Assuntos
Tubulina (Proteína) , Animais , Camundongos , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Peptídeo Sintases , Proteínas Associadas aos Microtúbulos
14.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674791

RESUMO

The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry. We used HEK 293 cells stably expressing CCP6-BirA* to identify 37 putative interactors of this enzyme. This list of CCP6 proximal proteins displayed enrichment of proteins associated with the centrosome and centriolar satellites, indicating that CCP6 could be present in the pericentriolar material. In addition, we identified cilium assembly-related proteins as putative interactors of CCP6. In addition, the CCP6 proximal partner list included five proteins associated with the Joubert syndrome, a ciliopathy linked to defects in polyglutamylation. Using the proximity ligation assay (PLA), we show that PCM1, PIBF1, and NudC are true CCP6 physical interactors. Therefore, the BioID methodology confirms the location and possible functional role of CCP6 in centrosomes and centrioles, as well as in the formation and maintenance of primary cilia.


Assuntos
Centríolos , Cílios , Masculino , Humanos , Cílios/metabolismo , Células HEK293 , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas/metabolismo
15.
Genes (Basel) ; 13(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35885974

RESUMO

Intraflagellar transport (IFT) is a microtubule-based system that supports the assembly and maintenance of cilia. The dysfunction of IFT leads to ciliopathies of variable severity. Two of the IFT-B components are the paralogue proteins TTC30A and TTC30B. To investigate whether these proteins constitute redundant functions, CRISPR/Cas9 was used to generate single TTC30A or B and double-knockout hTERT-RPE1 cells. Ciliogenesis assays showed the redundancy of both proteins while the polyglutamylation of cilia was affected in single knockouts. The localization of other IFT components was not affected by the depletion of a single paralogue. A loss of both proteins led to a severe ciliogenesis defect, resulting in no cilia formation, which was rescued by TTC30A or B. The redundancy can be explained by the highly similar interaction patterns of the paralogues; both equally interact with the IFT-B machinery. Our study demonstrates that a loss of one TTC30 paralogue can mostly be compensated by the other, thus preventing severe ciliary defects. However, cells assemble shorter cilia, which are potentially limited in their function, especially because of impaired polyglutamylation. A complete loss of both proteins leads to a deficit in IFT complex B integrity followed by disrupted IFT and subsequently no cilia formation.


Assuntos
Cílios , Ciliopatias , Transporte Biológico , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Humanos , Proteínas/metabolismo
16.
Protein Expr Purif ; 197: 106112, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35598696

RESUMO

CCP6 is a member of cytosolic carboxypeptidases (CCPs) family, an eraser of a reversible protein posttranslational modification - polyglutamylation, and represents a potential therapeutic target. Currently, production of CCPs mainly depends on eukaryotic expression system, which is time-consuming and costly. Here, we reported that mouse origin full-length CCP6 can be successfully expressed in the soluble fraction of bacteria ArcticExpress (DE3) strain. However, the recombinant mCCP6 was initially co-purified with Cpn60 in a stoichiometric ratio of roughly 1:7 and exhibited no enzyme activity. When coupled with a step to promote the release of the substrate protein from the chaperonins by treatment with ATP/Mg2+/K+, the recombinant CCP6 with deglutamylation activity was obtained, though still partially associated with Cpn60. This is the first report, to our knowledge, that the successful expression and purification of active recombinant mammalian CCPs using a bacterial system was achieved.


Assuntos
Carboxipeptidases , Escherichia coli , Animais , Carboxipeptidases/genética , Carboxipeptidases/isolamento & purificação , Carboxipeptidases/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Mamíferos , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
17.
Front Cell Dev Biol ; 10: 860065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399537

RESUMO

Microtubules, made from the polymerization of the highly conserved α/ß-tubulin heterodimers, serve as important components of the cytoskeleton in all eukaryotic cells. The existence of multiple tubulin isotypes in metazoan genomes and a dazzling variety of tubulin posttranslational modifications (PTMs) prompted the "tubulin code" hypothesis, which proposed that microtubule structure and functions are determined by the tubulin composition and PTMs. Evidence for the tubulin code has emerged from studies in several organisms with the characterization of specific tubulins for their expression and functions. The studies of tubulin PTMs are accelerated by the discovery of the enzymes that add or remove the PTMs. In tubulin research, the use of simple organisms, such as Caenorhabditis elegans, has been instrumental for understanding the expression and functional specialization of tubulin isotypes and the effects of their PTMs. In this review, we summarize the current understanding of the expression patterns and cellular functions of the nine α-tubulin and six ß-tubulin isotypes. Expression studies are greatly facilitated by the CRISPR/Cas9-mediated endogenous GFP knock-in reporters and the organism-wide single cell transcriptomic studies. Meanwhile, functional studies benefit from the ease of genetic manipulation and precise gene replacement in C. elegans. These studies identified both ubiquitously expressed tubulin isotypes and tissue-specific isotypes. The isotypes showed functional redundancy, as well as functional specificity, which is likely caused by the subtle differences in their amino acid sequences. Many of these differences concentrate at the C-terminal tails that are subjected to several PTMs. Indeed, tubulin PTM, such as polyglutamylation, is shown to modulate microtubule organization and properties in both ciliated and non-ciliated neurons. Overall, studies from C. elegans support the distinct expression and function patterns of tubulin isotypes and the importance of their PTMs and offer the promise of cracking the tubulin code at the whole-genome and the whole-organism level.

18.
Amino Acids ; 54(4): 529-542, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35357568

RESUMO

Polyglutamylation is a posttranslational modification (PTM) that adds several glutamates on glutamate residues in the form of conjugated peptide chains by a family of enzymes known as polyglutamylases. Polyglutamylation is well documented in microtubules. Polyglutamylated microtubules consist of different α- and ß-tubulin subunits with varied number of added glutamate residues. Kinetic control and catalytic rates of tubulin modification by polyglutamylases influence the polyglutamylation pattern of functional microtubules. The recent studies uncovered catalytic mechanisms of the glutamylation enzymes family, particularly tubulin tyrosine ligase-like (TTLL). Variable length polyglutamylation of primary sequence glutamyl residues have been mapped with a multitude of protein chemistry and proteomics approaches. Although polyglutamylation was initially considered a tubulin-specific modification, the recent studies have uncovered a calmodulin-dependent glutamylase, SidJ. Nano-electrospray ionization (ESI) proteomic approaches have identified quantifiable polyglutamylated sites in specific substrates. Indeed, conjugated glutamylated peptides were used in nano-liquid chromatography gradient delivery due to their relative hydrophobicity for their tandem mass spectrometry (MS/MS) characterization. The recent polyglutamylation characterization has revealed three major sites: E445 in α-tubulin, E435 in ß-tubulin, and E860 in SdeA. In this review, we have summarized the progress made using proteomic approaches for large-scale detection of polyglutamylated peptides, including biology and analysis.


Assuntos
Espectrometria de Massas em Tandem , Tubulina (Proteína) , Ácido Glutâmico/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Tubulina (Proteína)/química
19.
ASN Neuro ; 14: 17590914211062765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35014548

RESUMO

Neuronal migration and dendritogenesis are dependent on dynamic changes to the microtubule (MT) network. Among various factors that regulate MT dynamics and stability, post-translational modifications (PTMs) of MTs play a critical role in conferring specificity of regulatory protein binding to MTs. Thus, it is important to understand the regulation of PTMs during brain development as multiple developmental processes are dependent on MTs. In this study, we identified that carboxypeptidase E (CPE) changes tubulin polyglutamylation, a major PTM in the brain, and we examine the impact of CPE-mediated changes to polyglutamylation on cortical neuron migration and dendrite morphology. We show, for the first time, that overexpression of CPE increases the level of polyglutamylated α-tubulin while knockdown decreases the level of polyglutamylation. We also demonstrate that CPE-mediated changes to polyglutamylation are dependent on the CPE zinc-binding motif and that this motif is necessary for CPE action on p150Glued localization. However, overexpression of a CPE mutant that does not increase MT glutamylation mimics the effects of overexpression of wild type CPE on dendrite branching. Furthermore, although overexpression of wild type CPE does not alter cortical neuron migration, overexpression of the mutant may act in a dominant-negative manner as it decreases the number of neurons that reach the cortical plate (CP), as we previously reported for CPE knockdown. Overall, our data suggest that CPE changes MT glutamylation and redistribution of p150Glued and that this function of CPE is independent of its role in shaping dendrite development but plays a partial role in regulating cortical neuron migration.


Assuntos
Microtúbulos , Tubulina (Proteína) , Carboxipeptidase H , Neurogênese , Neurônios
20.
EMBO J ; 40(17): e108498, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34309047

RESUMO

Tubulin polyglutamylation is a post-translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The "tubulin code" hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation-specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α-tubulin, while TTLL7 modifies ß-tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.


Assuntos
Transporte Axonal , Doenças Neurodegenerativas/metabolismo , Peptídeo Sintases/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeo Sintases/genética , Ácido Poliglutâmico/metabolismo , Células de Purkinje/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA