Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Polymers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276704

RESUMO

Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation. This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide (PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of monolayer-like BB backbones.

2.
Small ; 19(25): e2206454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929281

RESUMO

Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.

3.
Angew Chem Int Ed Engl ; 62(15): e202217267, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762982

RESUMO

Nanoparticle (NP) assembly has been extensively studied, and a library of NP superstructures has been synthesized. These intricate structures show unique collective optical, electronic, and magnetic properties. In this work, we report a bottom-up approach for fabricating spherical gold nanoparticle (AuNP) assemblies that mimic colloidosomes. Co-crystallization of lipoic acid-end-functionalized poly(ethylene oxide) (PEO) and AuNPs in solution via a self-seeding method led to the formation of hollow spherical NP assemblies named nanoparticle crystalsomes (NPCs). Due to the spherical shape, the translational symmetry of PEO crystals is broken in NPCs, which can be attributed to the competition between NP close packing and polymer crystallization. This was confirmed by tuning the NPC morphology via varying the self-seeding temperature, crystallization temperature, and PEO molecular weight. We envisage that this strategy paves the way to attaining exquisite morphological control of NP assemblies with broken translational symmetry.

4.
Macromol Rapid Commun ; 44(1): e2200529, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35879644

RESUMO

Polymer crystalsomes are a class of hollow crystalline polymer nanoparticles with shells formed by single crystals with broken translational symmetry. They have shown intriguing mechanical, thermal, and biomedical properties associated with spherical packing. Previously reported crystalsomes are formed by quasi-2D lamellae which can readily tile on a spherical surface. In this work, the formation of polymer crystalsomes formed by 1D polymer crystals is reported. Poly (3-hexylthiophene) (P3HT) is chosen as the model polymer because of its 1D growth habit. P3HT crystalsomes are successfully fabricated using a miniemulsion solution crystallization method, as confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction (XRD) and selected area electron diffraction experiments confirm that P3HT crystallized into a Form I crystal structure. XRD, differential scanning calorimetry and UV-Vis results reveal curvature-dependent structural, thermal and electro-optical properties.


Assuntos
Polímeros , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Raios X
5.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432976

RESUMO

Fiber-reinforced polymer composites are largely employed for their improved strength with respect to unfilled matrices. Considering semi-crystalline materials under relevant processing conditions, the applied pressure and flow induce shear stresses at the fiber-polymer interface. These stresses may strongly enhance the nucleation ability of the fiber surface with respect to the quiescent case. It is thus possible to assume that the fiber features are no longer of importance and that crystallization is dominated by the effect of flow. However, by making use of an advanced experimental technique, i.e., polarization-modulated synchrotron infrared microspectroscopy (PM-SIRMS), we are able to show that the opposite is true for the industrially relevant case of isotactic polypropylene (iPP). With PM-SIRMS, the local chain orientation is measured with micron-size spatial resolution. This orientation can be related to the polymer nucleation density along the fiber surface. For various combinations of an iPP matrix and fiber, the degree of orientation in the cylindrical layer that develops during flow correlates well with the differences in nucleation density found in quiescent conditions. This result shows that the morphological development during processing of polymer composites is not solely determined by the flow field, nor by the nucleating ability of the fiber surface alone, but rather by a synergistic combination of the two. In addition, using finite element modeling, it is demonstrated that, under the experimentally applied flow conditions, the interphase structure formation is mostly dominated by the rheological characteristics of the material rather than perturbations in experimental conditions, such as shear rate, layer thickness, and temperature. This once again highlights the importance of matrix-filler interplay during flow and, thus, of material selection in the design of hybrid and lightweight composite technologies.

6.
Materials (Basel) ; 15(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36143599

RESUMO

We investigated, via a phase-field model simulation, the effects of a matrix's properties and a filler's characters on the polytetrafluoroethylene (PTFE) crystal growth process in composites under various supercooling degrees. The results show that the supercooling degree has a deciding influence on the crystal growth process. The intrinsic properties of PTFE polymer, such as anisotropic strength and phase transition latent heat, affect the growth rate, orientation, and interfacial integrity of the crystal trunk and the branching of the PTFE crystal growth process. The factors of the PTFE crystallization process, such as anisotropic strength and phase translation interface thickness, affect the uniformity and crystallization degree of the PTFE crystal. In the composites, the biphasic interface induces the crystal growth direction via the polymer chain segment migration rate, of which the degree depends on the shapes of the filler and the PTFE crystal nucleus. According to the results, choosing the low molecular weight PTFE and mixture filler with various particle sizes and surface curvatures as the raw materials of PTFE-based composites improves the crystallization of the PTFE matrix.

7.
ACS Nano ; 16(6): 8993-9003, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35588377

RESUMO

Organic crystals formed by small molecules can be highly functional but are often brittle or insoluble structures with limited possibilities for use or processing from a liquid phase. A possible solution is the nanoscale integration of polymers into organic crystals without sacrificing long-range order and therefore function. This enables the organic crystals to benefit from the advantageous mechanical and chemical properties of the polymeric component. We report here on a strategy in which small molecules cocrystallize with side chains of chemically disordered polymers to create hybrid nanostructures containing a highly ordered lattice. Synchrotron X-ray scattering, absorption spectroscopy, and coarse-grained molecular dynamics simulations reveal that the polymer backbones form an "exo-crystalline" layer of disordered chains that wrap around the nanostructures, becoming a handle for interesting properties. The morphology of this "hybrid bonding polymer" nanostructure is dictated by the competition between the polymers' entropy and the enthalpy of the lattice allowing for control over the aspect ratio of the nanocrystal by changing the degree of polymer integration. We observed that nanostructures with an exo-crystalline layer of polymer exhibit enhanced fracture strength, self-healing capacity, and dispersion in water, which benefits their use as light-harvesting assemblies in photocatalysis. Guided by computation, future work could further explore these hybrid nanostructures as components for functional materials.

8.
Rep Prog Phys ; 85(3)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35060493

RESUMO

The general aspects of polymer crystallization under external flow, i.e., flow-induced crystallization (FIC) from fundamental theoretical background to multi-scale characterization and modeling results are presented. FIC is crucial for modern polymer processing, such as blowing, casting, and injection modeling, as two-third of daily-used polymers is crystalline, and nearly all of them need to be processed before final applications. For academics, the FIC is intrinsically far from equilibrium, where the polymer crystallization behavior is different from that in quiescent conditions. The continuous investigation of crystallization contributes to a better understanding on the general non-equilibrium ordering in condensed physics. In the current review, the general theories related to polymer nucleation under flow (FIN) were summarized first as a preliminary knowledge. Various theories and models, i.e., coil-stretch transition and entropy reduction model, are briefly presented together with the modified versions. Subsequently, the multi-step ordering process of FIC is discussed in detail, including chain extension, conformational ordering, density fluctuation, and final perfection of the polymer crystalline. These achievements for a thorough understanding of the fundamental basis of FIC benefit from the development of various hyphenated rheometer, i.e., rheo-optical spectroscopy, rheo-IR, and rheo-x-ray scattering. The selected experimental results are introduced to present efforts on elucidating the multi-step and hierarchical structure transition during FIC. Then, the multi-scale modeling methods are summarized, including micro/meso scale simulation and macroscopic continuum modeling. At last, we briefly describe our personal opinions related to the future directions of this field, aiming to ultimately establish the unified theory of FIC and promote building of the more applicable models in the polymer processing.

9.
Adv Sci (Weinh) ; 9(1): e2103706, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766471

RESUMO

Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.

10.
Polymers (Basel) ; 13(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34451217

RESUMO

One of the main drawbacks of Fused Filament Fabrication is the often-inadequate mechanical performance of printed parts due to a lack of sufficient interlayer bonding between successively deposited layers. The phenomenon of interlayer bonding becomes especially complex for semi-crystalline polymers, as, besides the extremely non-isothermal temperature history experienced by the extruded layers, the ongoing crystallization process will greatly complicate its analysis. This work attempts to elucidate a possible relation between the degree of crystallinity attained during printing by mimicking the experienced thermal history with Fast Scanning Chip Calorimetry, the extent of interlayer bonding by performing trouser tear fracture tests on printed specimens, and the resulting crystalline morphology at the weld interface through visualization with polarized light microscopy. Different printing conditions are defined, which all vary in terms of processing parameters or feedstock molecular weight. The concept of an equivalent isothermal weld time is utilized to validate whether an amorphous healing theory is capable of explaining the observed trends in weld strength. Interlayer bond strength was found to be positively impacted by an increased liquefier temperature and reduced feedstock molecular weight as predicted by the weld time. An increase in liquefier temperature of 40 °C brings about a tear energy value that is three to four times higher. The print speed was found to have a negligible effect. An elevated build plate temperature will lead to an increased degree of crystallinity, generally resulting in about a 1.5 times larger crystalline fraction compared to when printing occurs at a lower build plate temperature, as well as larger spherulites attained during printing, as it allows crystallization to occur at higher temperatures. Due to slower crystal growth, a lower tie chain density in the amorphous interlamellar regions is believed to be created, which will negatively impact interlayer bond strength.

11.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202647

RESUMO

We simulated the crystallization and melting behavior of entangled polymer melts using molecular dynamics where each chain is subject to a force dipole acting on its ends. This mimics the deformation of chains in a flow field but represents a well-defined equilibrium system in the melt state. Under weak extension within the linear response of the chains, the mechanical work done on the system is about two orders of magnitude smaller as compared with the heat of fusion. As a consequence, thermodynamic and simple arguments following the secondary nucleation model predict only small changes of the crystalline phase. By contrast, an increase of the stem length up to a factor of two is observed in our simulations. On the other hand, the lamellar thickening induced by the external force is proportional to the increase of the entanglement length in the melt prior to crystallization as measured by the primitive path method. While the mechanical work done on the system is only a small perturbation for thermodynamics of polymer crystallization, the change of the primitive path is large. This suggests that a strong increase in the lamellar thickness induced, by external deformation, a topological rather than a thermodynamic origin.

12.
Nanomaterials (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205535

RESUMO

The effect of the crystallization of polypropylene (PP) forming an immiscible polymer blend with polystyrene (PS) containing conductive multi-wall carbon nanotubes (MWCNTs) on its electrical conductivity and electrical percolation threshold (PT) was investigated in this work. PP/PS/MWCNTs composites with a co-continuous morphology and a concentration of MWCNTs ranging from 0 to 2 wt.% were obtained. The PT was greatly reduced by a two-step approach. First, a 50% reduction in the PT was achieved by using the effect of double percolation in the blend system compared to PP/MWCNTs. Second, with the additional thermal treatments, referred to as slow-cooling treatment (with the cooling rate 0.5 °C/min), and isothermal treatment (at 135 °C for 15 min), ultra-low PT values were achieved for the PP/PS/MWCNTs system. A 0.06 wt.% of MWCNTs was attained upon the use of the slow-cooling treatment and 0.08 wt.% of MWCNTs upon the isothermal treatment. This reduction is attributed to PP crystals' volume exclusion, with no alteration in the blend morphology.

13.
Polymers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064146

RESUMO

We examined the formation of self-seeded platelet-like crystals from polystyrene-block-polyethylene oxide (PS-b-PEO) diblock copolymers in toluene as a function of polymer concentration (c), crystallization temperature (TC), and self-seeding temperature (TSS). We showed that the number (N) of platelet-like crystals and their mean lateral size (L) can be controlled through a self-seeding procedure. As (homogeneous) nucleation was circumvented by the self-seeding procedure, N did not depend on TC. N increased linearly with c and decayed exponentially with TSS but was not affected significantly by the time the sample was kept at TSS. The solubility limit of PS-b-PEO in toluene (c*), which was derived from the linear extrapolation of Nc→ 0 and from the total deposited mass of the platelets per area (MCc→0), depended on TC. We have also demonstrated that at low N, stacks consisting of a (large) number (η) of uniquely oriented lamellae can be achieved. At a given TC, L was controlled by N and η as well as by ∆c=c-c∗. Thus, besides being able to predict size and number of platelet-like crystals, the self-seeding procedure also allowed control of the number of stacked lamellae in these crystals.

14.
Polymers (Basel) ; 13(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799374

RESUMO

We report fast-scanning chip-calorimetry measurement of isothermal crystallization kinetics of poly(glycolic acid) (PGA) in a broad temperature range. We observed that PGA crystallization could be suppressed by cooling rates beyond -100 K s-1 and, after fast cooling, by heating rates beyond 50 K s-1. In addition, the parabolic curve of crystallization half-time versus crystallization temperature shows that PGA crystallizes the fastest at 130 °C with the minimum crystallization half-time of 4.28 s. We compared our results to those of poly(L-lactic acid) (PLLA) with nearby molecular weights previously reported by Androsch et al. We found that PGA crystallizes generally more quickly than PLLA. In comparison to PLLA, PGA has a much smaller hydrogen side group than the methyl side group in PLLA; therefore, crystal nucleation is favored by the higher molecular mobility of PGA in the low temperature region as well as by the denser molecular packing of PGA in the high temperature region, and the two factors together decide the higher crystallization rates of PGA in the whole temperature range.

15.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513767

RESUMO

A set of criteria to enhance mechanical performances of standard specimens (Type V, ANSI D368) made of polylactic acid (PLA) were proposed. Fused PLA deposition was conducted with nozzle temperature ranging from 180 to 230 °C and deposition plate temperature ranging from 70 to 110 °C. Optical microscopy, elastic modulus analysis and density measurement allowed emphasizing the effect of temperature field, also measured during the process, on the morphology and the mechanical characteristics of the specimen. Atomic force microscopy revealed a morphology typical of amorphous samples with globular structures. Poor interlayer adhesion was detected in the part of the specimen located at larger distance from the deposition plate, showing an elastic modulus lower than those measured in the central part (220 MPa vs. 500 MPa). The specimen crystallinity degree was below 3%. The molecular weight between entanglements was adopted as a measure of the interlayer molecular diffusion. A successful diffusion and re-entanglement of the polymer melt at the interface was the key to improving mechanical performance. A mathematical model describing the transient heat transfer during the fused PLA deposition and accounting for solidification and the nonisothermal crystallization kinetics was introduced. Simulated temperature evolutions were consistent with the experimental ones. They were related to the mechanical performances, the morphology, and the molecular weight between entanglements of the parts.

16.
Macromol Rapid Commun ; 41(15): e2000228, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32608541

RESUMO

Block copolymer brushes are of great interest due to their rich phase behavior and value-added properties compared to homopolymer brushes. Traditional synthesis involves grafting-to and grafting-from methods. In this work, a recently developed "polymer-single-crystal-assisted-grafting-to" method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)-b-poly(l-lactide)-b-poly(3-(triethoxysilyl)propyl methacrylate) (PEO-b-PLLA-b-PTESPMA) is synthesized with PLLA as the brush morphology-directing component and PTESPMA as the anchoring block. PEO-b-PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm-2 from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well-defined block copolymer brushes.


Assuntos
Cristalização/métodos , Metacrilatos/química , Polietilenoglicóis/química , Polímeros/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polímeros/síntese química , Propriedades de Superfície
17.
Polymers (Basel) ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396357

RESUMO

This work investigates crystallization modeling by modifying an open-source computational fluid dynamics code OpenFOAM. The crystallization behavior of high-density polyethylene (HDPE) is implemented according to theoretical and experimental literature. A number of physical interdependencies are included. The cavity is modeled as deformable. The heat transfer coefficient in the thermal contact towards the mold depends on contact pressure. The thermal conductivity is pressure- and crystallinity-dependent. Specific heat depends on temperature and crystallinity. Latent heat is released according to the crystallization progress and temperature. Deviatoric elastic stress is evolved in the solidified material. The prediction of the cavity pressure evolution is used for the assessment of the solution quality because it is experimentally available and governs the residual stress development. Insight into the thermomechanical conditions is provided with through-thickness plots of pressure, temperature and cooling rate at different levels of crystallinity. The code and simulation setup are made openly available to further the research on the topic.

18.
Adv Colloid Interface Sci ; 275: 102080, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31809990

RESUMO

Printed organic electronics has attracted considerable interest in recent years as it enables the fabrication of large-scale, low-cost electronic devices, and thus offers significant possibilities in terms of developing new applications in various fields. Easy processing is a prerequisite for the development of low-cost, flexible and printed plastics electronics. Among processing techniques, meniscus guided coating methods are considered simple, efficient, and low-cost methods to fabricate electronic devices in industry. One of the major challenges is the control of thin film morphology, molecular orientations and directional alignment of polymer films during coating processes. Herein, the recent progress of emerging field of meniscus guided printing organic semiconductor materials is discussed. The first part of this report briefly summarizes recent advances in meniscus guided coating techniques. The second part discusses periodic deposits and patterned deposition at moving contact lines, where the mass-transport influences film morphology due to convection at the triple contact line. The last section summarizes our strategy to fabricate large-scale patterning of π-conjugated polymers using meniscus guided method.

19.
Chemistry ; 26(2): 349-361, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31374132

RESUMO

Nanoparticles can be assembled into complex structures and architectures by using a variety of methods. In this review, we discuss recent progress of using polymer crystallization (particularly polymer single crystals, PSCs) to direct nanoparticle assembly. PSCs have been extensively studied since 1957. Mainly appearing as quasi-two-dimensional (2D) lamellae, PSCs are typically used as model systems to determine polymer crystalline structures, or as markers to investigate the crystallization process. Recent research has demonstrated that they can also be used as nanoscale functional materials. Herein, we show that nanoparticles can be directed to assemble into complex shapes by using in situ or ex situ polymer crystal growth. End-functionalized polymers can crystallize into 2D nanosheet PSCs, which are used to conjugate with complementary nanoparticles, leading to a nanosandwich structure. These nanosandwiches can find interesting applications for catalysis, surface-enhanced Raman spectroscopy, and nanomotors. Dissolution of the nanosandwich leads to the formation of Janus nanoparticles, providing a unique method for asymmetric nanoparticle synthesis.

20.
Nanomaterials (Basel) ; 9(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623232

RESUMO

Controlling the crystallinity of hybrid polymeric systems has an important impact on their properties and is essential for developing novel functional materials. The crystallization of nanocomposite polymers with gold nanoparticles is shown to be determined by free space between nanoparticles. Results of large-scale molecular dynamics simulations reveal while crystallinity is affected by the nanoparticle size and its volume fraction, their combined effects can only be measured by interparticle free space and characteristic size of the crystals. When interparticle free space becomes smaller than the characteristic extended length of the polymer molecule, nanoparticles impede the crystallization because of the confinement effects. Based on the findings from this work, equations for critical particle size or volume fraction that lead to this confinement-induced retardation of crystallization are proposed. The findings based on these equations are demonstrated to agree with the results reported in experiments for nanocomposite systems. The results of simulations also explain the origin of a two-tier crystallization regime observed in some of the hybrid polymeric systems with planar surfaces where the crystallization is initially enhanced and then retarded by the presence of nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA