Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(41): e2406262121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39361647

RESUMO

Using angle-resolved X-ray photoelectron spectroscopy, sum-frequency generation vibrational spectroscopy, contact angle measurements, and molecular dynamics simulations, we verify that the glass transition temperature (Tg) of polymer glass is lower near the free surface. However, the experimental Tg-gradients showed a linear variation with depth (z) from the free surface, while the simulated equilibrium Tg-gradients exhibited a double exponential z-dependence. In typical simulations, Tg is determined based on the relaxation time of the system reaching a prescribed threshold value at equilibrium. Conversely, the experiments determined Tg by observing the unfreezing of molecular mobility during heating from a kinetically arrested, nonequilibrium glassy state. To investigate the impact of nonequilibrium effects on the Tg-gradient, we reduced the thermal annealing time in simulations, allowing the system to fall out of equilibrium. We observe a decrease in the relaxation time and the emergence of a modified z-dependence consistent with a linear Tg-gradient near the free surface. We further validate the impact of nonequilibrium effects by studying the dependence of the Tg on the heating/cooling rate for polymer films of varying thickness (h). Our experimental results reveal significant variations in the Tg-heating/cooling rate dependence with h below the bulk Tg, which are also observed in simulation when the simulated system is not equilibrated. We explain our findings by the reduction in mass density within the inner region of the system under nonequilibrium conditions, as observed in simulation, and recent research indicating a decrease in the local Tg of a polymer when placed next to a softer material.

2.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275123

RESUMO

The reverse-mode smart windows, which usually fabricated by polymer stabilized liquid crystal (PSLC), are more practical for scenarios where high transparency is a priority for most of the time. However, the polymer stabilized cholesteric liquid crystal (PSCLC) film exhibits poor spacing stability due to the mobility of CLC molecules during the bending deformation. In this work, a reverse-mode PSCLC flexible film with excellent bending resistance was fabricated by the construction of polymer spacer columns. The effect of the concentration of the polymerizable monomer C6M and chiral dopant R811 on the electro-optical properties and polymer microstructure of the film were studied. The sample B2 containing 3 wt% of C6M and 3 wt% R811 presented the best electro-optical performance. The electrical switch between transparent and opaque state of the flexible PSCLC film after bending not only indicated the excellent electro-optical switching performance, but also demonstrated the outstanding bending resistance of the sample with polymer spacer columns, which makes the PSCLC film containing polymer spacer columns have a great potential to be applied in the field of flexible devices.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39239925

RESUMO

Energy-free passive daytime radiative cooling (PDRC) technology makes it an attractive solution to both the building energy crisis and global warming. Spectrally selective porous polymers have great potential for practical PDRC applications owing to their cooling performance and scalability. A fundamental understanding of the relationship between the cooling performance and pore properties is crucial for guiding future structural designs of high-performance PDRC materials. However, one of the key challenges is achieving uniform nanopores and tailorable pore morphologies in the PDRC coating films. Here we demonstrate a strategy to use advanced metal-organic framework (MOF) nanocrystals as a sacrificial template creating a nanoporous poly(vinylidene fluoride) (PVDF) coating film with uniform-sized nanopores for highly daytime passive radiative cooling. The experimental evidence indicates that nanopores around 400 nm in size, comparable to the wavelength within the ultraviolet and visible spectra, along with an appropriate porosity of 37%, contribute to excellent solar reflectance (94.9 ± 0.8%) and high long-wave infrared emission (92.8 ± 1.4%) in the resulting porous PVDF films. This leads to subambient cooling of ≈9.5 °C and a promising net cooling power of 137 W/m2 at midday under solar intensities of ∼1275 and ∼1320 W/m2. The performance equals or exceeds that of state-of-the-art polymeric PDRC designs, and this general strategy of tailing nanostructures is expected to open a new avenue toward high-performance radiative cooling materials for PDRC applications.

4.
ACS Appl Mater Interfaces ; 16(34): 45038-45048, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39162339

RESUMO

A bioinspired polymeric membrane capable of shifting the selectivity of a copper oxide electrocatalyst in the CO2 reduction reaction is described. The membrane is deposited on top of copper oxide thin films from wet deposition techniques under controlled conditions of humidity and self-assembles into an arranged network of micrometer-sized pores throughout the polymer cross-section. The membrane was composed of a block copolymer with a precisely controlled ratio of poly-4-vinylpyridine and poly(methyl methacrylate) blocks (PMMA-b-P4VP). The intrinsic hydrophobicity, together with the porous nature of the membrane's surface, induces a Cassie-Baxter wetting transition above neutral pH, resulting in water repulsion from the catalyst surface. As a consequence, the catalyst's surface is shielded from surrounding water molecules under CO2 electroreduction reaction conditions, and CO2 molecules are preferentially located in the vicinity of the catalytically active area. The CO2 reduction reaction is therefore kinetically favored over the hydrogen evolution reaction (HER).

5.
Fertil Steril ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39048019

RESUMO

OBJECTIVE: To study the effectiveness of a new intrauterine degradable polymer film (Womed Leaf) in the management of moderate to severe intrauterine adhesions (IUA). DESIGN: PREG-2 study was a multicenter, double-blind, randomized, controlled, stratified, two-arm superiority clinical trial conducted in 16 centers in seven countries. SETTING: Not applicable. PATIENT(S): Patients ≥18 years scheduled for hysteroscopic adhesiolysis because of symptomatic severe or moderate adhesions (according to American Fertility Society [AFS] IUA score) were considered eligible for the study. INTERVENTION(S): After adhesiolysis, patients were randomized at a 1:1 ratio to either have a Womed Leaf film inserted (intervention group) or not (control group). MAIN OUTCOME MEASURE(S): The primary effectiveness endpoint of the study was the change in AFS IUA score on second-look hysteroscopy (SLH), assessed by an independent evaluator, and compared with baseline. Information on the rate of no IUA and responder rate was collected as secondary effectiveness outcomes, while reported adverse events and patient-reported outcomes as safety and tolerability measures. RESULT(S): Between October 26, 2021, and September 28, 2023, a total of 160 women were randomized (Womed Leaf: n = 75 and controls: n = 85). The reduction in IUA AFS score on SLH was significantly higher in the intervention compared with the control group (mean 5.2 ± 2.8 vs. 4.2 ± 3.2). Similarly, the absence of adhesions on SLH was significantly higher in the intervention group (41% vs. 24%; odds ratio, 2.44; confidence interval, 1.161-5.116). None of the reported adverse events were serious or considered related to the device. CONCLUSION(S): Womed Leaf is effective and safe in the management of symptomatic severe or moderate IUAs. CLINICAL TRIAL REGISTRATION NUMBER: Clinicaltrials.gov identifier: NCT04963179.

6.
Adv Mater ; 36(36): e2405328, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39021267

RESUMO

Fluorine-containing 2D polymer (F-2DP) film is a desired system to regulate the charge transport in organic electronics but rather rarely reports due to the limited fluorine-containing building blocks and difficulties in synthesis. Herein, a novel polar molecule with antiparallel columnar stacking is synthesized and further embedded into an F-2DP system to control over the crystallinity of F-2DP film through self-complementary π-electronic forces. The donor-accepter-accepter'-donor' (D-A-A'-D') structure regulates the charge transportation efficiently, inducing multilevel memory behavior through stepwise charge capture and transfer processes. Thus, the device exhibits ternary memory behavior with low threshold voltage (Vth1 of 1.1 V, Vth2 of 2.0 V), clearly distinguishable resistance states (1:102:104) and ternary yield (83%). Furthermore, the stepwise formation of the charge complex endows the device with a wider range to regulate the conductive state, which allows its application in brain-inspired neuromorphic computing. Modified National Institute of Standards and Technology recognition can reach an accuracy of 86%, showing great potential in neuromorphic computing applications in the post-Moore era.

7.
Polymers (Basel) ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891479

RESUMO

The kinetic roughening of polymer films grown by vapor deposition polymerization was analyzed using the widely accepted classification framework of "generic scaling ansatz" given for the structure factor. Over the past two decades, this method has played a pivotal role in classifying diverse forms of dynamic scaling and understanding the mechanisms driving interface roughening. The roughness exponents of the polymer films were consistently determined as α=1.25±0.09, αloc=0.73±0.02, and αs=0.99±0.06. However, the inability to unambiguously assign these roughness exponent values to a specific scaling subclass prompts the proposal of a practical alternative. This report illustrates how all potential dynamic scaling can be consistently identified and classified based on the relationship between two temporal scaling exponents measured in real space: the average local slope and the global slope of the interface. The intrinsic anomalous roughening class is conclusively assigned to polymer film growth characterized by anomalous "native (background slope-removed) local height fluctuations". Moreover, the new analysis reveals that interfaces exhibiting anomalous scaling, previously classified as intrinsic anomalous roughening, could potentially belong to the super-rough class, particularly when the spectral roughness exponent αs is equal to 1.

8.
Polymers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891493

RESUMO

In this review, we introduce recently developed plasma-based approaches for depositing and treating piezoelectric nanoparticles (NPs) and piezoelectric polymer films for nanogenerator (NG) and sensor applications. We also present the properties and an overview of recently synthesized or modified piezoelectric materials on piezoelectric polymers to highlight the existing challenges and future directions of plasma methods under vacuum, low pressure, and ambient air conditions. The various plasma processes involved in piezoelectric NGs and sensors, including plasma-based vapor deposition, dielectric barrier discharge, and surface modification, are introduced and summarized for controlling various surface properties (etching, roughening, crosslinking, functionalization, and crystallinity).

9.
Chem Asian J ; 19(15): e202400377, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758347

RESUMO

The monitoring and precise determination of pesticides and pharmaceutical drugs and their residues have become increasingly important in the field of food safety and water contamination issues. Herein, a fluorescent aluminium MOF-based sensor (1) was developed for the selective recognition of neonicotinoid insecticide dinotefuran and anti-Parkinson's drug entacapone. Guest-free MOF 1' exhibited ultra-fast response (<5 s) and ultra-low detection limits of 2.3 and 7.6 nM for dinotefuran and entacapone, which are lower than the previously reported MOF-based sensors. In the presence of other competitive analytes, great selectivity was achieved towards both analytes. The probe was recyclable up to five cycles. The sensing ability was explored towards entacapone in human serum, urine and dinotefuran in real soil, rice, honey samples, different fruits, vegetables, real water specimens and a wide range of pH media. A low-cost, handy MOF-based polymer thin-film composite (1'@PVDF-PVP) was developed for the on-site detection of dinotefuran and entacapone. Mechanistic studies involving analytical techniques and theoretical calculations suggested that FRET and PET are the probable reasons for entacapone sensing whereas IFE is responsible for dinotefuran detection. The entire work presents a low cost, multi-use photoluminescent sensor of entacapone and dinotefuran to address the environmental pollution.


Assuntos
Guanidinas , Inseticidas , Estruturas Metalorgânicas , Neonicotinoides , Nitrilas , Neonicotinoides/análise , Neonicotinoides/urina , Estruturas Metalorgânicas/química , Humanos , Inseticidas/análise , Inseticidas/sangue , Nitrilas/química , Guanidinas/análise , Guanidinas/química , Guanidinas/sangue , Nitrofuranos/análise , Antiparkinsonianos/análise , Antiparkinsonianos/sangue , Corantes Fluorescentes/química , Estrutura Molecular , Limite de Detecção , Nitrocompostos
10.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794550

RESUMO

The dilational modulus (E) of polymer films has been commonly measured using the oscillating ring/bubble/drop methods with an external force, and often without specifying the state of the adsorbed film. This study explores an approach where E was determined from the relaxations of surface tension (ST) and surface area (SA) of natural perturbations, in which ST and SA were monitored using a pendant bubble tensiometer. The E of the adsorbed film of PAA (polyacrylic acid) was evaluated for aqueous solutions at CPAA = 5 × 10-4 g/cm3, [MW = 5, 25, and 250 (kDa)]. The E (=dγ/dlnA) was estimated from the surface dilational rate (dlnA/dt) and the rate of ST change (dγ/dt) of the bubble surface from the natural perturbation caused by minute variations in ambient temperature. The data revealed that (i) a considerable time is required to reach the equilibrium-ST (γeq) and to attain the saturated dilational modulus (Esat) of the adsorbed PAA film, (ii) both γeq and Esat of PAA solutions increase with MW of PAA, (iii) a lower MW solution requires a longer time to reach its γeq and Esat, and (iv) this approach is workable for evaluating the E of adsorbed polymer films.

11.
Gels ; 10(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667684

RESUMO

The oral cavity is constantly exposed to contact with an external environment. Pathogens can easily access and colonize it, causing a number of medical conditions that are usually accompanied by inflammation, which in turn require medical intervention and cause the deterioration of wellbeing. The aim of this study was to obtain polymer films that could be a carrier for chlorhexidine, an active substance used in the treatment of inflammation in the oral cavity, and at the same time act as a dressing for the application on the mucous membrane. Combinations of three biocompatible and biodegradable polymers were used to prepare the films. The obtained samples were characterized by assessing their water loss after drying, swelling ability, hygroscopicity and tensile strength. It was shown that the mixture of HPMC and gellan gum or gelatin could be used to prepare transparent, flexible polymer films with chlorhexidine. All tested films showed high hygroscopicity and swelling ability. However, it was observed that the composition containing gellan gum was more suitable for obtaining films with prolonged stay at the site of administration, which predisposes it to the role of a local dressing.

12.
ACS Appl Mater Interfaces ; 16(12): 14912-14921, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489228

RESUMO

The loose and randomly oriented byproduct (i.e., Zn4(OH)6SO4·xH2O, ZHS) in situ formed on the zinc (Zn) surface is recognized to be the primary cause for dendritic Zn growth and side reactions. Switching the detrimental passivation film into a dense and kinetically favorable solid electrolyte interphase (SEI) is a straightforward strategy to tackle these issues faced by Zn metal anodes but remains largely unexplored. Herein, a new polymer film directly grown on Zn metal through room-temperature plasma-enhanced chemical vapor deposition is proposed to induce the lateral growth of ZHS nanosheets and decrease the Zn2+ desolvation barrier, thereby forming a beneficial composite SEI for suppressing Zn dendrite growth and surface corrosion. As a result of the joint effect, we realize an impressively stable cycling behavior in symmetric cell over 3400 h at 2 mA cm-2. Moreover, full cells also demonstrate prolonged lifespans. This work opens a new avenue for stabilizing Zn metal batteries by turning detrimental ZHS into a favorable interlayer.

13.
Angew Chem Int Ed Engl ; 63(10): e202318516, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38241198

RESUMO

In this work, full-color and stable white organic afterglow materials with outstanding water, organic solvents, and temperature resistances have been developed for the first time by embedding the selected polycyclic aromatic hydrocarbons into melamine-formaldehyde polymer via solution polymerization. The afterglow quantum yields and lifetimes of the resulting polymer films were up to 22.7 % and 4.83 s, respectively, under ambient conditions. For the coronene-doped sample, its afterglow color could be linearly tuned between yellow and blue by adjusting the temperature, and it could still emit an intense blue afterglow with a lifetime of 0.68 s at 440 K. Moreover, the films showed a bright and stable white afterglow at 370 K with a lifetime of 2.80 s and maintained an excellent afterglow performance after soaking in water and organic solvents for more than 150 days. In addition, the application potential of the polymer films in information encryption and anti-counterfeiting was also demonstrated.

14.
Sensors (Basel) ; 24(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257459

RESUMO

The development of high-performance flexible pressure sensors with porous hierarchical microstructures is limited by the complex and time-consuming preparation processes of porous hierarchical microstructures. In this study, a simple modified heat curing process was first proposed to achieve one-step preparation of porous hemispherical microstructures on a polydimethylsiloxane (PDMS) substrate. In this process, a laser-prepared template was used to form surface microstructures on PDMS film. Meanwhile, the thermal decomposition of glucose monohydrate additive during heat curing of PDMS led to the formation of porous structures within PDMS film. Further, based on the obtained PDMS/CNTs electrodes with porous hemisphere array and ionic polymer dielectric layers, high-performance ionic piezocapacitive sensors were realized. Under the synergistic effect of the low-stiffness porous hemisphere microstructure and the electric double layer of the ionic polymer film, the sensor based on an ionic polymer film with a 1:0.75 ratio of P(VDF-HFP):[EMIM][TFSI] not only achieves a sensitivity of up to 106.27 kPa-1 below 3 kPa, but also has a wide measurement range of over 400 kPa, which has obvious advantages in existing flexible piezocapacitive sensors. The rapid response time of 110 s and the good stability of 2300 cycles of the sensor further elucidate its practicality. The application of the sensor in pulse monitoring, speech recognition, and detection of multiple dynamic loads verifies its excellent sensing performance. In short, the proposed heat curing process can simultaneously form porous structures and surface microstructures on PDMS films, greatly simplifying the preparation process of porous hierarchical microstructures and providing a simple and feasible way to obtain high-performance flexible pressure sensors.

15.
Nano Lett ; 24(1): 441-449, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109494

RESUMO

Conjugated polymer films are promising in wearable X-ray detection. However, achieving optimal film microstructure possessing good electrical and detection performance under large deformation via scalable printing remains challenging. Herein, we report bar-coated high-performance stretchable films based on a conjugated polymer P(TDPP-Se) and elastomer SEBS blend by optimizing the solution-processing conditions. The moderate preaggregation in solution and prolonged growth dynamics from a solvent mixture with limited dissolving capacity is critical to forming aligned P(TDPP-Se) chains/crystalline nanofibers in the SEBS phase with enhanced π-π stacking for charge transport and stress dissipation. The film shows a large elongation at break of >400% and high mobilities of 5.29 cm2 V-1 s-1 at 0% strain and 1.66 cm2 V-1 s-1 over 500 stretch-release cycles at 50% strain, enabling good X-ray imaging with a high sensitivity of 1501.52 µC Gyair-1 cm-2. Our work provides a morphology control strategy toward high-performance conjugated polymer film-based stretchable electronics.

16.
Polymers (Basel) ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139945

RESUMO

The wide range of applications and continuous demand for plastics is causing serious global environmental problems. Massive discharges of expanded polystyrene (EPS) are thought to be primarily responsible for the increased white pollution. Waste EPS has received wide attention in the development of innovative products. White light-emitting diodes pumped by a near-UV chip (n-UV WLEDs) are regarded as a very promising solid-state lighting. The performance of the n-UV WLED is largely determined by the properties of the tricolor luminescence materials. In this work, a blue-emitting polymer film for n-UV WLED applications was developed from waste EPS. First, using waste EPS as a raw material, benzimidazole groups were bonded to PS benzene rings by chemical reactions to obtain modified PS (PS-PBI). Then, a film based on PS-PBI was prepared by a simple solution drop-casting method. The PS-PBI film can emit intense blue light when irradiated with 365 nm light. An n-UV WLED pumped by a 365 nm UV chip was fabricated using PS-PBI film as the blue-emitting layer. The fabricated n-UV WLED shows excellent luminescence properties, such as a bright white light with color coordinates of (0.337, 0.331), a relatively low color temperature (CCT, 5270 K), and an especially high color rendering index (CRI, 93.6). The results prove that the blue-emitting PS-PBI film prepared from waste EPS is a very promising candidate for n-UV WLED applications. The strategy of converting waste EPS into a high-value-added blue-emitting film in this work provides a convenient and feasible approach for upcycling waste EPS, achieving significant environmental and economic benefits.

17.
Polymers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959960

RESUMO

The etching of iron alloy items in a H3PO4 solution is used in various human activities (gas and oil production, metalworking, transport, utilities, etc.). The etching of iron alloys is associated with significant material losses due to their corrosion. It has been found that an efficient way to prevent the corrosion of iron alloys in a H3PO4 solution involves the formation of thin complex compound films consisting of the corrosion inhibitor molecules of a triazole derivative (TrzD) on their surface. It has been shown that the protection of iron alloys with a mixture of TrzD + KNCS in a H3PO4 solution is accompanied by the formation of a thin film of coordination polymer compounds thicker than 4 nm consisting of TrzD molecules, Fe2+ cations and NCS-. The layer of the complex compound immediately adjacent to the iron alloy surface is chemisorbed on it. The efficiency of this composition as an inhibitor of iron alloy corrosion and hydrogen bulk sorption by iron alloys is determined by its ability to form a coordination polymer compound layer, as experimentally confirmed by electrochemical, AFM and XPS data. The efficiency values of inhibitor compositions 5 mM TrzD + 0.5 mM KNCS and 5 mM TrzD + 0.5 mM KNCS + 200 mM C6H12N4 at a temperature of 20 ± 1 °C are 97% and 98%, respectively. The kinetic parameters of the limiting processes of hydrogen evolution and permeation into an iron alloy in a H3PO4 solution were determined. A significant decrease in both the reaction rate of hydrogen evolution and the rate of hydrogen permeation into the iron alloy by the TrzD and its mixtures in question was noted. The inhibitor compositions 5 mM TrzD + 0.5 mM KNCS and 5 mM TrzD + 0.5 mM KNCS + 200 mM C6H12N4 decreased the total hydrogen concentration in the iron alloy up to 9.3- and 11-fold, respectively. The preservation of the iron alloy plasticity in the corrosive environment containing the inhibitor under study was determined by a decrease in the hydrogen content in the alloy bulk.

18.
Materials (Basel) ; 16(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895611

RESUMO

Thin cross-linked films containing sulfonated poly(ether etherketone), SPEEK, and poly(vinyl alcohol), PVA, served as efficient photocatalysts for the reduction of CHCl3 when swollen in air-saturated solutions of formate buffers were photolyzed with 350 nm photons. The phototransformation generated CH2Cl2, CO2 and Cl- as products. The utilization of the continuous extraction method coupled with in situ potentiometry enabled kinetic determinations of the reaction progress. Quantum yields of halide ion formation, ϕ(Cl-), larger than 1 were obtained in the presence of air. These findings, together with the occurrence of a post-irradiation Cl- formation, indicated that the photoreduction took place via a chain process. Reductions photoinitiated by swollen films exhibited ϕ(Cl-) values between 3 and 20 times higher than the reactions induced in solutions containing the two polymers. Also, the dependencies of ϕ(Cl-) on CHCl3 or HCO2- concentration diverged significantly from the trends observed using solutions. Most findings are consistent with the occurrence of a reaction mechanism involving SPEEK radicals, •CO2- and •CHCl2 as chain carriers.

19.
Materials (Basel) ; 16(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687448

RESUMO

The structure of very thin polymer films formed by strongly adsorbed macromolecules was studied by computer simulation. A coarse-grained model of strictly two-dimensional polymer systems was built, and its properties determined by an efficient Monte Carlo simulation algorithm. Properties of the model system were determined by means of Monte Carlo simulations with a sampling algorithm that combines Verdier-Stockmayer, pivot and reputation moves. The effects of temperature, chain length and polymer concentration on the macromolecular structure were investigated. It was shown that at low temperatures, the chain size increases with the concentration, that is, inversely with high temperatures. This behavior should be explained by the influence of inter-chain interactions.

20.
Polymers (Basel) ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37688233

RESUMO

This comprehensive review begins by tracing the historical development and progress of cold plasma technology as an innovative approach to polymer engineering. The study emphasizes the versatility of cold plasma derived from a variety of sources including low-pressure glow discharges (e.g., radiofrequency capacitively coupled plasmas) and atmospheric pressure plasmas (e.g., dielectric barrier devices, piezoelectric plasmas). It critically examines key operational parameters such as reduced electric field, pressure, discharge type, gas type and flow rate, substrate temperature, gap, and how these variables affect the properties of the synthesized or modified polymers. This review also discusses the application of cold plasma in polymer surface modification, underscoring how changes in surface properties (e.g., wettability, adhesion, biocompatibility) can be achieved by controlling various surface processes (etching, roughening, crosslinking, functionalization, crystallinity). A detailed examination of Plasma-Enhanced Chemical Vapor Deposition (PECVD) reveals its efficacy in producing thin polymeric films from an array of precursors. Yasuda's models, Rapid Step-Growth Polymerization (RSGP) and Competitive Ablation Polymerization (CAP), are explained as fundamental mechanisms underpinning plasma-assisted deposition and polymerization processes. Then, the wide array of applications of cold plasma technology is explored, from the biomedical field, where it is used in creating smart drug delivery systems and biodegradable polymer implants, to its role in enhancing the performance of membrane-based filtration systems crucial for water purification, gas separation, and energy production. It investigates the potential for improving the properties of bioplastics and the exciting prospects for developing self-healing materials using this technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA