Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
AAPS PharmSciTech ; 25(5): 132, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849590

RESUMO

Hydrogen sulfide (H2S) is a multifaceted gasotransmitter molecule which has potential applications in many pathological conditions including in lowering intraocular pressure and providing retinal neuroprotection. However, its unique physicochemical properties pose several challenges for developing its efficient and safe delivery method system. This study aims to overcome challenges related to H2S toxicity, gaseous nature, and narrow therapeutic concentrations range by developing polymeric microparticles to sustain the release of H2S for an extended period. Various formulation parameters and their interactions are quantitatively identified using Quality-by-Design (QbD) approach to optimize the microparticle-based H2S donor (HSD) delivery system. Microparticles were prepared using a solvent-evaporation coacervation process by using polycaprolactone (PCL), soy lecithin, dichloromethane, Na2S.9H2O, and silicone oil as polymer, surfactant, solvent, HSD, and dispersion medium, respectively. The microparticles were characterized for size, size distribution, entrapment efficiency, and H2S release profile. A Main Effects Screening (MES) and a Response Surface Design (RSD) model-based Box-Behnken Design (BBD) was developed to establish the relationship between critical process parameters (CPPs) and critical quality attributes (CQAs) qualitatively and quantitatively. The MES model identified polymer to drug ratio and dispersion medium quantity as significant CPPs among others, while the RSD model established their quantitative relationship. Finally, the target product performance was validated by comparing predicted and experimental outcomes. The QbD approach helped in achieving overall desired microparticle characteristics with fewer trials and provided a mathematical relationship between the CPPs and the CQAs useful for further manipulation and optimization of release profile up to at least 30 days.


Assuntos
Sulfeto de Hidrogênio , Tamanho da Partícula , Polímeros , Sulfeto de Hidrogênio/química , Polímeros/química , Química Farmacêutica/métodos , Solventes/química , Poliésteres/química , Microesferas , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Tensoativos/química , Composição de Medicamentos/métodos
2.
Pharmaceutics ; 16(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675211

RESUMO

In recent years, increasing interest has been accorded to polyester-based polymer microstructures, driven by their promising potential as advanced drug delivery systems. This study presents the preparation and characterization of new polymeric microparticles based on poly(ethylene brassylate-co-squaric acid) loaded with norfloxacin, a broad-spectrum antibiotic. Polymacrolactone was synthesised in mild conditions through the emulsion polymerization of bio-based and renewable monomers, ethylene brassylate, and squaric acid. The microparticles were obtained using the precipitation technique and subsequently subjected to comprehensive characterization. The impact of the copolymer/drug ratio on various properties of the new system was systematically evaluated, confirming the structure of the copolymer and the encapsulation of norfloxacin. The microspheres are approximately spherical and predominantly homogeneously distributed. The average hydrodynamic diameter of the microparticles falls between 400 and 2000 nm, a decrease that is observed with the increase in norfloxacin content. All samples showed good encapsulation efficiency and drug loading capacity, with the highest values obtained for microparticles synthesised using an equal ratio of copolymer and drug. In vitro drug release results disclose that norfloxacin molecules are released in a sustained biphasic manner for up to 24 h. Antimicrobial activity was also studied, with samples showing very good activity against E. coli and moderate activity against S. aureus and E. faecalis. In addition, HDFA human fibroblast cell cultures demonstrated the cytocompatibility of the microparticles.

3.
Bioeng Transl Med ; 9(2): e10634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435811

RESUMO

Influenza virus outbreaks are a major burden worldwide each year. Current vaccination strategies are inadequate due to antigenic drift/shift of the virus and the elicitation of low immune responses. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) immunogens subvert the constantly mutating viruses; however, they are poorly immunogenic on their own. To increase the immunogenicity of subunit vaccines such as this, adjuvants can be delivered with the vaccine. For example, agonists of the stimulator of interferon genes (STING) have proven efficacy as vaccine adjuvants. However, their use in high-risk populations most vulnerable to influenza virus infection has not been closely examined. Here, we utilize a vaccine platform consisting of acetalated dextran microparticles loaded with COBRA HA and the STING agonist cyclic GMP-AMP. We examine the immunogenicity of this platform in mouse models of obesity, aging, and chemotherapy-induced immunosuppression. Further, we examine vaccine efficacy in collaborative cross mice, a genetically diverse population that mimics human genetic heterogeneity. Overall, this vaccine platform had variable efficacy in these populations supporting work to better tailor adjuvants to specific populations.

4.
Adv Biol (Weinh) ; 8(2): e2300386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845003

RESUMO

In metabolically active tumors, responses of cells to drugs are heavily influenced by oxygen availability via the surrounding vasculature alongside the extracellular matrix signaling. The objective of this study is to investigate hepatotoxicity by replicating critical features of hepatocellular carcinoma (HCC). This includes replicating 3D structures, metabolic activities, and tumor-specific markers. The internal environment of spheroids comprised of cancerous human patient-derived hepatocytes using microparticles is modulated to enhance the oxygenation state and recreate cell-extracellular matrix interactions. Furthermore, the role of hepatic stellate cells in maintaining hepatocyte survival and function is explored and hepatocytes from two cellular sources (immortalized and patient-derived) to create four formulations with and without microparticles are utilized. To investigate drug-induced changes in metabolism and apoptosis in liver cells, coculture spheroids with and without microparticles are exposed to three hepatotoxic drugs. The use of microparticles increases levels of apoptotic markers in both liver models under drug treatments. This coincides with reduced levels of anti-apoptotic proteins and increased levels of pro-apoptotic proteins. Moreover, cells from different origins undergo apoptosis through distinct apoptotic pathways in response to identical drugs. This 3D microphysiological system offers a viable tool for liver cancer research to investigate mechanisms of apoptosis under different microenvironmental conditions.


Assuntos
Carcinoma Hepatocelular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cocultura , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular
5.
Drug Deliv Transl Res ; 14(4): 959-969, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37824041

RESUMO

Cannabidiol (CBD) has become a highly attractive entity in therapeutics. However, its low aqueous solubility, instability and handling problems limit the development of effective CBD formulations. Subcutaneously administered CBD-loaded polycaprolactone microparticles (MP) represent an interesting strategy to overcome these challenges. This work focuses on evaluating the pharmacokinetics of CBD formulated in polymer microparticles for subcutaneous administration and characterising its release. The mean release time (MRLT) parameter is used to compare the release of CBD from two microparticle formulations in vitro and in a mouse model. After the administration of CBD in solution, a bicompartmental distribution is observed due to the extensive diffusion to the brain, being the brain/blood AUC ratio 1.29. The blood and brain mean residence time (MRT) are 0.507 ± 0.04 and 0.257 ± 0.0004 days, respectively. MP prepared with two drug/polymer ratios (15/150-MP and 30/150-MP) are designed, showing similar in vitro dissolution profiles (similarity factor (f2) is 63.21), without statistically significant differences between MRLTin vitro values (4.68 ± 0.63 and 4.32 ± 0.05 days). However, considerable differences in blood and brain profiles between both formulations are detected. The blood and brain MRT values of 15/150-MP are 6.44 ± 0.3 days and 6.15 ± 0.25 days, respectively, whereas significantly lower values 3.91 ± 0.29 days and 2.24 ± 0.64 days are obtained with 30/150-MP. The extended release of CBD during 10 days after a single subcutaneous administration is achieved.


Assuntos
Canabidiol , Camundongos , Animais , Canabidiol/farmacocinética , Poliésteres , Composição de Medicamentos , Polímeros , Administração Oral
6.
Chemphyschem ; 25(4): e202300758, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116981

RESUMO

The design of novel polymeric carrier systems with functional coatings is of great interest for delivering various bioactive molecules. Microcapsules coated with polyelectrolyte (PE) films provide additional functionality and fine-tuning advantages essential for controlled drug release. We developed hydrogel microcarriers coated with functional PE films with encapsulated substances of natural origin, resveratrol (RES), curcumin (CUR), and epigallocatechin gallate (EGCG), which have cytotoxic and chemopreventive properties. Alginate (ALG) based microparticles were loaded with phytopharmaceuticals using the emulsification method, and then their surface was modified with PE coatings, such as chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). The morphology and mean diameter of microcarriers were characterised by scanning electron microscopy, encapsulation efficiency was determined by UV-Vis spectroscopy, whereas the physicochemical properties of functional PE layers were studied using quartz crystal microbalance with dissipation monitoring and streaming potential measurements. The release profiles of active compounds from the hydrogel microparticles were described using the Peppas-Sahlin model. The cytotoxic effect of designed delivery systems was studied by evaluating their impact on the proliferation, mitochondrial metabolic function, and lipid peroxidation level of 5637 human bladder cancer cells. The present work demonstrates that the physicochemical and biological features of fabricated microcarriers can be controlled by the type of encapsulated anti-cancer agent and PE coating.


Assuntos
Alginatos , Antineoplásicos , Humanos , Polieletrólitos/química , Alginatos/química , Hidrogéis , Polímeros , Resveratrol
7.
Polymers (Basel) ; 15(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37571138

RESUMO

Ecosystems around the world are experiencing a major environmental impact from microplastic particles (MPs 0.1 µm-1 mm). Water, sediments, and aquatic biota show the widespread presence of this pollutant. However, MPs are rarely used in laboratory studies as they are scarcely available for purchase or expensive, especially if one wishes to trace the particle with a dye or fluorescent. Furthermore, existing preparation techniques have limited application in biological studies. In this work, we propose a new, easy, and cheap way to prepare fluorescent MPs. The protocol is based on the osmosis method in order to obtain spherical polymeric particles of P(S-co-MMA), with 0.7-9 micron diameter, made fluorescent because dye-doped with rhodamine B isothiocyanate (RITC) or fluorescein isothiocyanate (FITC). The dye loading was studied and optimized, and the MPs-dye conjugates were characterized by UV-vis FTIR and XPS spectrometry and scanning electron microscopy (SEM). Furthermore, preliminary tests on aquatic organisms demonstrated the possible use of these fluorescent MPs in bioimaging studies, showing their absorption/adsorption by duckweeds (Lemna minuta) and insect larvae (Cataclysta lemnata).

8.
J Pharm Sci ; 112(12): 3175-3184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595752

RESUMO

Rivastigmine is an acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibitor drug approved by the US Food and Drug Administration (FDA) for the treatment of mild to moderate dementia of Alzheimer's type. However, its first-pass metabolism and gastrointestinal side effects negatively affect the tolerability and efficacy of oral therapy. These adverse effects could be avoided with the use of a sustained -release formulation as an intramuscular (IM) administration system. The objective of this work was to develop polylactic co-glycolic acid (PLGA) microparticles for the sustained release of rivastigmine and to evaluate its stability during storage, tissue tolerance, in vitro release, and in vivo pharmacokinetics after its IM administration. The microparticles were made by the solvent evaporation emulsion method. A series of formulation parameters (the type of polymer used, the amount of polymer used, the initial amount of rivastigmine, and the volume of PVA 0.1% w/v) were studied to achieve an encapsulation efficiency (EE) and a rivastigmine load of 54.8 ± 0.9% and 3.3 ± 0.1%, respectively. The microparticles, whose size was 56.1 ± 2.8 µm, had a spherical shape and a smooth surface. FT-IR analysis showed that there is no chemical interaction between rivastigmine and the polymer. PLGA microparticles maintain rivastigmine retained and stable under normal (5 ± 3 °C) and accelerated storage (25 ± 2 °C and 60 ± 5 % RH) conditions for at least 6 months. The microparticles behaved as a sustained release system both in vitro and in vivo compared to non-encapsulated rivastigmine. The IM administration of the formulation in rats did not produce significant tissue damage. However, it is necessary to reproduce the experiments with multiple doses to rule out a negative effect in terms of tolerability in chronic treatment. To the best of our knowledge, this study is the only one that has obtained the sustained release of rivastigmine from PLGA microparticles after IM administration in an in vivo model.


Assuntos
Acetilcolinesterase , Glicóis , Ratos , Animais , Preparações de Ação Retardada , Rivastigmina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier , Butirilcolinesterase , Polímeros , Tamanho da Partícula , Microesferas
9.
Materials (Basel) ; 16(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176470

RESUMO

Oral candidiasis is an opportunistic infection that affects mainly individuals with weakened immune system. Devices used in the oral area to treat this condition include buccal films, which present advantages over both oral tablets and gels. Since candidiasis causes pain, burning, and itching, the purpose of this work was to develop buccal films loaded with both lidocaine (anesthetic) and miconazole nitrate (MN, antifungal) to treat this pathology topically. MN was loaded in microparticles based on different natural polymers, and then, these microparticles were loaded in hydroxypropyl methylcellulose-gelatin-based films containing lidocaine. All developed films showed adequate adhesiveness and thickness. DSC and XRD tests suggested that the drugs were in an amorphous state in the therapeutic systems. Microparticles based on chitosan-alginate showed the highest MN encapsulation. Among the films, those containing the mentioned microparticles presented the highest tensile strength and the lowest elongation at break, possibly due to the strong interactions between both polymers. These films allowed a fast release of lidocaine and a controlled release of MN. Due to the latter, these systems showed antifungal activity for 24 h. Therefore, the treatment of oropharyngeal candidiasis with these films could reduce the number of daily applications with respect to conventional treatments.

10.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982517

RESUMO

Microparticulate systems such as microparticles, microspheres, microcapsules or any particle in a micrometer scale (usually of 1-1000 µm) are widely used as drug delivery systems, because they offer higher therapeutic and diagnostic performance compared to conventional drug delivery forms. These systems can be manufactured with many raw materials, especially polymers, most of which have been effective in improving the physicochemical properties and biological activities of active compounds. This review will focus on the in vivo and in vitro application in the last decade (2012 to 2022) of different active pharmaceutical ingredients microencapsulated in polymeric or lipid matrices, the main formulation factors (excipients and techniques) and mostly their biological activities, with the aim of introducing and discussing the potential applicability of microparticulate systems in the pharmaceutical field.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Excipientes , Cápsulas , Microesferas , Tamanho da Partícula
11.
J Photochem Photobiol B ; 241: 112671, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870247

RESUMO

Antimicrobial resistance is an ever-growing global concern, making the development of alternative antimicrobial agents and techniques an urgent priority to protect public health. Antimicrobial photodynamic therapy (aPDT) is one such promising alternative, which harnesses the cytotoxic action of reactive oxygen species (ROS) generated upon irradiation of photosensitisers (PSs) with visible light to destroy microorganisms. In this study we report a convenient and facile method to produce highly photoactive antimicrobial microparticles, exhibiting minimal PS leaching, and examine the effect of particle size on antimicrobial activity. A ball milling technique produced a range of sizes of anionic p(HEMA-co-MAA) microparticles, providing large surface areas available for electrostatic attachment of the cationic PS, Toluidine Blue O (TBO). The TBO-incorporated microparticles showed a size-dependent effect on antimicrobial activity, with a decrease in microparticle size resulting in an increase in the bacterial reductions achieved when irradiated with red light. The >6 log10Pseudomonas aeruginosa and Staphylococcus aureus reductions (>99.9999%) achieved within 30 and 60 min, respectively, by TBO-incorporated >90 µm microparticles were attributed to the cytotoxic action of the ROS generated by TBO molecules bound to the microparticles, with no PS leaching from these particles detected over this timeframe. TBO-incorporated microparticles capable of significantly reducing the bioburden of solutions with short durations of low intensity red light irradiation and minimal leaching present an attractive platform for various antimicrobial applications.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Fotoquimioterapia/métodos , Luz , Cloreto de Tolônio/farmacologia , Staphylococcus aureus
12.
Drug Deliv Transl Res ; 13(2): 689-701, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36109442

RESUMO

Posttraumatic osteoarthritis (PTOA) is mostly treated via corticosteroid administration, and total joint arthroplasty continues to be the sole effective intervention in severe conditions. To assess the therapeutic potential of CCR2 targeting in PTOA, we used biodegradable microplates (µPLs) to achieve a slow and sustained intraarticular release of the CCR2 inhibitor RS504393 into injured knees and followed joint damage during disease progression. RS504393-loaded µPLs (RS-µPLs) were fabricated via a template-replica molding technique. A mixture of poly(lactic-co-glycolic acid) (PLGA) and RS504393 was deposited into 20 × 10 µm (length × height) wells in a polyvinyl alcohol (PVA) square-patterned template. After physicochemical and toxicological characterizations, the RS504393 release profile from µPL was assessed in PBS buffer. C57BL/6 J male mice were subjected to destabilization of the medial meniscus (DMM)/sham surgery, and RS-µPLs (1 mg/kg) were administered intraarticularly 1 week postsurgery. Administrations were repeated at 4 and 7 weeks post-DMM. Drug free-µPLs (DF-µPLs) and saline injections were performed as controls. Mice were euthanized at 4 and 10 weeks post-DMM, corresponding to the early and severe PTOA stages, respectively. Knees were evaluated for cartilage structure score (ACS, H&E), matrix loss (safranin O score), osteophyte formation and maturation from cartilage to bone (cartilage quantification), and subchondral plate thickness. The RS-µPL architecture ensured the sustained release of CCR2 inhibitors over several weeks, with ~ 20% of RS504393 still available at 21 days. This prolonged release improved cartilage structure and reduced bone damage and synovial hyperplasia at both PTOA stages. Extracellular matrix loss was also attenuated, although with less efficacy. The results indicate that local sustained delivery is needed to optimize CCR2-targeted therapies.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Masculino , Animais , Receptores CCR2 , Camundongos Endogâmicos C57BL , Osteoartrite/tratamento farmacológico , Osso e Ossos , Modelos Animais de Doenças
13.
Colloids Surf B Biointerfaces ; 219: 112834, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152599

RESUMO

Modification of the cell surface with artificial nano- and microparticles (also termed "cellular backpacks") containing biologically active payloads usually enables drug targeting via harnessing intrinsic cell tropism to the sites of injury. In some cases, using cells as delivery vehicles leads to improved pharmacokinetics due to extended circulation time of cell-immobilized formulations. Another rationale for particle attachment to cells is augmentation of desirable cellular functions and cell proliferation in response to release of the particle contents. In this study, we conjugated poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with multifunctional antioxidant enzyme peroxiredoxin-1 (Prx1) to the surface of fibroblasts. The obtained microparticles were uniform in size and demonstrated sustained protein release. We found that the released Prx1 maintains its signaling activity resulting in macrophage activation, as indicated by TNFα upregulation and increase in ROS generation. Functionalization of fibroblasts with PLGA/Prx1 microparticles via EDC/sulfo-NHS coupling reaction did not affect cell viability but increased cell migratory properties and collagen I production. Moreover, PLGA/Prx1 backpacks increased resistance of fibroblasts to oxidative stress and attenuated cell senescence. In summary, we have developed a novel approach of fibroblast modification to augment their biological properties, which can be desirable for wound repair, cosmetic dermatology, and tissue engineering.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Ácido Láctico/metabolismo , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Estresse Oxidativo , Tamanho da Partícula
14.
Life (Basel) ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888137

RESUMO

Vitamins are widely found in nature, for example, in plants and fruits. Ascorbic acid and nicotinamide are examples of these compounds that have potent antioxidant properties, besides stimulating collagen production and depigmenting properties that protect the skin from premature aging. To overcome the skin barrier and reduce the instability of antioxidant compounds, alternative systems have been developed to facilitate the delivery of antioxidants, making them efficiently available to the tissue for an extended time without causing damage or toxicity. The objective of this study was to obtain chitosan biodegradable microparticles containing ascorbic acid and nicotinamide for topical delivery. The microparticles were obtained by spray drying and characterized chemically by means of scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and differential exploratory calorimetry. The drugs were successfully encapsulated and the microparticles showed positive zeta potential. In vitro release assays showed a sustained release profile. The evaluation of ex vivo skin permeation and retention demonstrated low permeation and adequate retention of the compounds in the epidermis/dermis, suggesting the efficient delivery from the obtained microparticles. Antibacterial assays have shown that microparticles can inhibit the growth of microorganisms in a time- and dose-dependent manner, corroborating their use in cosmetic products for application on the skin.

15.
Pharmaceutics ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678642

RESUMO

Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.

16.
Bioimpacts ; 12(6): 501-513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644544

RESUMO

Introduction: Glatiramer acetate (GA) is a newly emerged therapeutic peptide to reduce the frequency of relapses in multiple sclerosis (MS). Despite its good performance in controlling MS, it is not widely used due to daily or biweekly subcutaneous injections due to rapid degradation and body clearance. Therefore, implant design with sustained release leads to prolonged biological effects by gradually increasing drug exposure and protecting GA from rapid local degradation. Methods: Different emulsion methods, PLGA type, surfactant concentration, drug/polymer ratio, drying processes, stirring method, and other variables in preliminary studies modified the final formulation. The release kinetics were studied through mechanistic kinetic models such as zero-order, Weibull, Higuchi, etc. In this study, all challenges for easy scale-up, methodological detail, and a simple, feasible setup in mass production were discussed. Results: The optimized formulation was obtained by 1:6 drug/PLGA, 0.5% w/w polyvinyl alcohol, and 0.75% w/w NaCl in the external aqueous phase, 1:10 continuous phase to dispersed phase ratio, and without any surfactant in the primary emulsion. The final freeze-dried particles presented a narrow distributed size of 1-10 µm with 7.29% ± 0.51 drug loading and zero-order release behavior with appropriate regression correlation (R2 98.7), complete release, and only 7.1% initial burst release. Conclusion: Therefore, to achieve improvement in patient compliance through better and longer efficacy, designing the parenteral sustained release microspheres (MPSs) of this immune modulator is a promising approach that should be considered.

17.
ACS Appl Mater Interfaces ; 13(27): 31379-31392, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197081

RESUMO

Osteoarthritis (OA) is treated with the intra-articular injection of steroids such as dexamethasone (DEX) to provide short-term pain management. However, DEX treatment suffers from rapid joint clearance. Here, 20 × 10 µm, shape-defined poly(d,l-lactide-co-glycolide)acid microPlates (µPLs) are created and intra-articularly deposited for the sustained release of DEX. Under confined conditions, DEX release is projected to persist for several months, with only ∼20% released in the first month. In a highly rigorous murine knee overload injury model (post-traumatic osteoarthritis), a single intra-articular injection of Cy5-µPLs is detected in the cartilage surface, infrapatellar fat pad/synovium, joint capsule, and posterior joint space up to 30 days. One intra-articular injection of DEX-µPL (1 mg kg-1) decreased the expression of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, and matrix metalloproteinase (MMP)-13 by approximately half compared to free DEX at 4 weeks post-treatment. DEX-µPL also reduced load-induced histological changes in the articular cartilage and synovial tissues relative to saline or free DEX. In sum, the µPLs provide sustained drug release along with the capability to precisely control particle geometry and mechanical properties, yielding long-lasting benefits in overload-induced OA. This work motivates further study and development of particles that provide combined pharmacological and mechanical benefits.


Assuntos
Cartilagem Articular/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Portadores de Fármacos/química , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Animais , Biomarcadores/metabolismo , Preparações de Ação Retardada , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intra-Articulares , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estresse Mecânico
18.
Adv Mater ; 33(22): e2007154, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33891327

RESUMO

In-fiber fluid instability can be harnessed to realize scalable microparticles fabrication with tunable sizes and multifunctional characteristics making it competitive in comparison to conventional microparticles fabrication methods. However, since in-fiber fluid instability has to be induced via thermal annealing and the resulting microparticles can only be collected after dissolving the fiber cladding, obtaining contamination-free particles for high-temperature incompatible materials remains great challenge. Herein, confinement-free fluid instability is demonstrated to fabricate polymeric microparticles in a facile manner induced by the ultralow surface energy of the superamphiphobic surface. The polymer solution columns break up into uniform droplets then form spherical particles spontaneously in seconds at ambient temperature. This method can be applied to a variety of polymers spanning an exceptionally wide range of sizes: from 1 mm down to 1 µm. With the aid of microfluidic spinning instrument, a large quantity of microparticles can be obtained, making this method promising for scaling up production. Notably, through simple modification of the feed solution configuration, composite/structured micromaterials can also be produced, including quantum-dots-labeled fluorescent particles, magnetic particles, core-shell particles, microcapsules, and necklace-like microfibers. This method, with general applicability and facile control, is envisioned to have great prospects in the field of polymer microprocessing.

19.
J Pharm Sci ; 110(5): 2185-2195, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33383057

RESUMO

Schizophrenia is a neurodevelopmental disorder which is expressed in the form of disturbed behaviour and abnormal mental functions. Patient's non-adherence to the medicine is the main cause of failure of drug therapy and increases incidence of relapses. Thus, for successful management of disease long acting parenteral formulations were developed. Aripiprazole was encapsulated in biocompatible polycaprolactone microsphere by o/w emulsion solvent-evaporation method in order to achieve sustained release of the drug for several weeks after single subcutaneous administration. They were optimised on the basis of various parameters such as physical appearance, particle size (49.4 µm-387.1 µm), encapsulation efficiency (70%-95%), percentage yield (33%-75%) and drug loading (25.9%-47.5%). The surface topography and sphericity of the microspheres was determined by scanning electron microscopy which revealed that the microspheres formed were spherical and non-porous in nature. The in vitro releases from the selected formulations were found to be 87% and 95% respectively after 45 days of dissolution. In vivo efficacy of optimised formulation showed significantly (p < 0.05) amelioration of various positive, negative and cognitive symptoms associated with schizophrenia and oxidative stress markers in ketamine-induced schizophrenia model in rats for 30 days.


Assuntos
Esquizofrenia , Animais , Aripiprazol , Preparações de Ação Retardada , Ácido Láctico , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Poliésteres , Ratos , Esquizofrenia/tratamento farmacológico
20.
Pharmaceutics ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233637

RESUMO

Supercritical carbon dioxide (SC-CO2) can serve as solvent, anti-solvent and solute, among others, in the field of drug delivery applications, e.g., for the formulation of polymeric nanocarriers in combination with different drug molecules. With its tunable properties above critical pressure and temperature, SC-CO2 offers control of the particle size, the particle morphology, and their drug loading. Moreover, the SC-CO2-based techniques overcome the limitations of conventional formulation techniques e.g., post purification steps. One of the widely used polymers for drug delivery systems with excellent mechanical (Tg, crystallinity) and chemical properties (controlled drug release, biodegradability) is poly (lactic acid) (PLA), which is used either as a homopolymer or as a copolymer, such as poly(lactic-co-glycolic) acid (PLGA). Over the last 30 years, extensive research has been conducted to exploit SC-CO2-based processes for the formulation of PLA carriers. This review provides an overview of these research studies, including a brief description of the SC-CO2 processes that are widely exploited for the production of PLA and PLGA-based drug-loaded particles. Finally, recent work shows progress in the development of SC-CO2 techniques for particulate drug delivery systems is discussed in detail. Additionally, future perspectives and limitations of SC-CO2-based techniques in industrial applications are examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA