Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Int J Biol Macromol ; 277(Pt 2): 134188, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084428

RESUMO

The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0-0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.

2.
Cell Biochem Biophys ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023679

RESUMO

The escalating global threat of antibiotic resistance underscores the urgent need for innovative antimicrobial strategies. This review explores the cutting-edge applications of nanotechnology in combating bacterial infections, addressing a critical healthcare challenge. We critically assess the antimicrobial properties and mechanisms of diverse nanoparticle systems, including liposomes, polymeric micelles, solid lipid nanoparticles, dendrimers, zinc oxide, silver, and gold nanoparticles, as well as nanoencapsulated essential oils. These nanomaterials offer distinct advantages, such as enhanced drug delivery, improved bioavailability, and efficacy against antibiotic-resistant strains. Recent advancements in nanoparticle synthesis, functionalization, and their synergistic interactions with conventional antibiotics are highlighted. The review emphasizes biocompatibility considerations, stressing the need for rigorous safety assessments in nanomaterial applications. By synthesizing current knowledge and identifying emerging trends, this review provides crucial insights for researchers and clinicians aiming to leverage nanotechnology for next-generation antimicrobial therapies. The integration of nanotechnology represents a promising frontier in combating infectious diseases, underscoring the timeliness and imperative of this comprehensive analysis.

3.
Int J Biol Macromol ; 274(Pt 2): 133048, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857734

RESUMO

Epiisopiloturine (EPI) is a compound found in jaborandi leaves with antiparasitic activity, which can be enhanced when incorporated into nanoparticles (NP). Cashew Gum (CG), modified by carboxymethylation, is used to produce polymeric nanomaterials with biological activity. In this study, we investigated the antimicrobial potential of carboxymethylated CG (CCG) NP containing EPI (NPCCGE) and without the alkaloid (NPCCG) against bacteria and parasites of the genus Leishmania. We conducted theoretical studies, carboxymethylated CG, synthesized NP by nanoprecipitation, characterized them, and tested them in vitro. Theoretical studies confirmed the stability of modified carbohydrates and showed that the EPI-4A30 complex had the best interaction energy (-8.47 kcal/mol). CCG was confirmed by FT-IR and presented DSabs of 0.23. NPCCG and NPCCGE had average sizes of 221.94 ± 144.086 nm and 247.36 ± 3.827 nm, respectively, with homogeneous distribution and uniform surfaces. No NP showed antibacterial activity or cytotoxicity to macrophages. NPCCGE demonstrated antileishmanial activity against L. amazonensis, both in promastigote forms (IC50 = 9.52 µg/mL, SI = 42.01) and axenic amastigote forms (EC50 = 6.6 µg/mL, SI = 60.60). The results suggest that nanostructuring EPI in CCG enhances its antileishmanial activity.


Assuntos
Anacardium , Anti-Infecciosos , Nanopartículas , Gomas Vegetais , Anacardium/química , Nanopartículas/química , Gomas Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Animais , Camundongos , Leishmania/efeitos dos fármacos , Simulação por Computador , Imidazóis , 4-Butirolactona/análogos & derivados
4.
Nanomedicine (Lond) ; 19(14): 1271-1283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905147

RESUMO

Artificial intelligence has revolutionized many sectors with unparalleled predictive capabilities supported by machine learning (ML). So far, this tool has not been able to provide the same level of development in pharmaceutical nanotechnology. This review discusses the current data science methodologies related to polymeric drug-loaded nanoparticle production from an innovative multidisciplinary perspective while considering the strictest data science practices. Several methodological and data interpretation flaws were identified by analyzing the few qualified ML studies. Most issues lie in following appropriate analysis steps, such as cross-validation, balancing data, or testing alternative models. Thus, better-planned studies following the recommended data science analysis steps along with adequate numbers of experiments would change the current landscape, allowing the exploration of the full potential of ML.


[Box: see text].


Assuntos
Inteligência Artificial , Ciência de Dados , Aprendizado de Máquina , Nanopartículas , Nanopartículas/química , Humanos , Ciência de Dados/métodos , Nanotecnologia/métodos , Polímeros/química
5.
Int J Nanomedicine ; 19: 5021-5044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832335

RESUMO

Nanoparticle systems integrating alginate and chitosan emerge as a promising avenue to tackle challenges in leveraging the potency of pharmacological active agents. Owing to their intrinsic properties as polysaccharides, alginate and chitosan, exhibit remarkable biocompatibility, rendering them conducive to bodily integration. By downsizing drug particles to the nano-scale, the system enhances drug solubility in aqueous environments by augmenting surface area. Additionally, the system orchestrates extended drug release kinetics, aligning well with the exigencies of chronic drug release requisite for antibacterial therapeutics. A thorough scrutiny of existing literature underscores a wealth of evidence supporting the utilization of the alginate-chitosan nanoparticle system for antibacterial agent delivery. Literature reviews present abundant evidence of the utilization of nanoparticle systems based on a combination of alginate and chitosan for antibacterial agent delivery. Various experiments demonstrate enhanced antibacterial efficacy, including an increase in the inhibitory zone diameter, improvement in the minimum inhibitory concentration, and an enhancement in the bacterial reduction rate. This enhancement in efficacy occurs due to mechanisms involving increased solubility resulting from particle size reduction, prolonged release effects, and enhanced selectivity towards bacterial cell walls, stemming from ionic interactions between positively charged particles and teichoic acid on bacterial cell walls. However, clinical studies remain limited, and there are currently no marketed antibacterial drugs utilizing this system. Hence, expediting clinical efficacy validation is crucial to maximize its benefits promptly.


Assuntos
Alginatos , Antibacterianos , Quitosana , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Humanos , Nanopartículas/química , Tamanho da Partícula , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Testes de Sensibilidade Microbiana , Animais , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Bactérias/efeitos dos fármacos
6.
J Taibah Univ Med Sci ; 19(3): 549-565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736898

RESUMO

Alzheimer's disease (AD), is characterised by two major hallmarks: the formation of extracellular ß-amyloid (Aß) plaques and the hyperphosphorylation of tau protein, thus leading to the formation of neurofibrillary tangles. These hallmarks cause synaptic loss, neuronal damage, and the development of neuroinflammation and oxidative stress, which promote AD progression. Thus, the goal of treating AD is eliminating these hallmarks, to prevent AD progression and decrease symptoms. However, current available therapies provide symptomatic relief rather than treating the underlying cause of the disease, because the restrictive nature of the blood brain barrier (BBB) impedes the entry of drugs, thereby affecting drug efficacy and bioavailability. Researchers are focusing on developing new therapeutic approaches to bypass the BBB, for achieving site-specific drug delivery with the highest possible bioavailability and the lowest adverse effects. Recently explored therapeutic strategies include use of biologic agents such as monoclonal antibodies. Aducanumab, a strong candidate for treating AD, has been granted accelerated Food and Drug Administration approval; however, safety concerns may hinder its future use. Thus, nanotechnological approaches have led to a new era of AD treatment. Nanoparticles (NPs), because of their small particle size, can cross the BBB, thus enhancing drug pharmacokinetic properties and enabling targeted drug delivery. Polymeric NPs have been extensively studied, because of their simple production, biodegradability, biocompatibility, and unique architecture. These NPs provide a flexible vesicle that can be easily tailored to achieve desired physicochemical features. In this review, various types of polymer-based-NPs are discussed, highlighting the properties of fabricated NPs, which have multiple benefits in AD treatment, including anti-amyloid, antioxidant, and anti-inflammatory effects.

7.
Angew Chem Int Ed Engl ; 63(18): e202402291, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38380542

RESUMO

Developing combination chemotherapy systems with high drug loading efficiency at predetermined drug ratios to achieve a synergistic effect is important for cancer therapy. Herein, a polymeric dual-drug nanoparticle composed of a Pt(IV) prodrug derived from oxaliplatin and a mitochondria-targeting cytotoxic peptide is constructed through emulsion interfacial polymerization, which processes high drug loading efficiency and high biocompatibility. The depolymerization of polymeric dual-drug nanoparticle and the activation of Pt prodrug can be effectively triggered by the acidic tumor environment extracellularly and the high levels of glutathione intracellularly in cancer cells, respectively. The utilization of mitochondria-targeting peptide can inhibit ATP-dependent processes including drug efflux and DNA damage repair. This leads to increased accumulation of Pt-drugs within cancer cells. Eventually, the polymeric dual-drug nanoparticle demonstrates appreciable antitumor effects on both cell line derived and patient derived xenograft lung cancer model. It is highly anticipated that the polymeric dual-or multi-drug systems can be applied for combination chemotherapy to achieve enhanced anticancer activity and reduced side effects.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos
8.
Int J Biol Macromol ; 263(Pt 1): 130272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373560

RESUMO

Bevacizumab (BVZ) was the first monoclonal antibody approved by the FDA and has shown an essential advance in the antitumor therapy of colorectal cancer (CRC), however, the systemic action of BVZ administered intravenously can trigger several adverse effects. The working hypothesis of the study was to promote the modulation of the mucoadhesion properties and permeability of the BVZ through the formation of nanoparticles (NPs) with gellan gum (GG) with subsequent surface modification with chitosan (CS). NPs comprising BVZ and GG were synthesized through polyelectrolyte complexation, yielding spherical nanosized particles with an average diameter of 264.0 ± 2.75 nm and 314.0 ± 0.01 nm, polydispersity index of 0.182 ± 0.01 e 0.288 ± 0.01, and encapsulation efficiency of 29.36 ± 0.67 e 60.35 ± 0.27 mV, for NPs without (NP_BVZ) and with surface modification (NP_BVZ + CS). The results showed a good ability of nanoparticles with surface modification to modulate the NPs biological properties.


Assuntos
Quitosana , Nanopartículas , Polissacarídeos Bacterianos , Portadores de Fármacos , Bevacizumab/farmacologia
9.
Front Oncol ; 14: 1203129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406817

RESUMO

Introduction: We evaluated the effect of high-dose polymeric nanoparticle micellar paclitaxel (PM-Pac) on survival in patients with stage III-IV high-grade serous ovarian cancer (HGSC) who underwent upfront surgery. Methods: We prospectively recruited the patients who received PM-Pac (280 mg/m2) and carboplatin at an area under the curve (AUC) of 5 (cohort 1) in two tertiary centers between October 2015 and June 2019. As historical controls, we retrospectively collected data on those who received paclitaxel (175 mg/m2) and carboplatin (AUC 5; cohort 2) or paclitaxel (175 mg/m2), carboplatin (AUC 5) and bevacizumab (15 mg/kg; cohort 3). Results: A total of 128 patients were divided into cohorts 1 (n=49, 38.3%), 2 (n=53, 41.4%), and 3 (n=26, 20.3%). Cohort 1 showed better progression-free survival (PFS) than cohort 2 in all patients and those treated with optimal debulking surgery (ODS; median, 35.5 vs. 28.1 and 35.5 vs. 28.9 months; p ≤ 0.01) despite no difference in PFS between cohorts 1 and 3 and between cohorts 2 and 3. In particular, stage III disease was a favorable factor for PFS, whereas cohort 2 was related to worse PFS (adjusted hazard ratios, 0.456 and 1.834; 95% confidence interval, 0.263 - 0.790 and 1.061 - 3.171), showing no difference in PFS between cohorts 1 and 3 in those treated with ODS. Conclusion: High-dose PM-Pac improved PFS compared to conventional chemotherapy, and the change of paclitaxel to PM-Pac had as much effect on PFS as the addition of bevacizumab in patients with stage III-IV HGSC who underwent ODS.

10.
Nano Lett ; 24(7): 2242-2249, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346395

RESUMO

Bioorthogonal catalysis employing transition metal catalysts is a promising strategy for the in situ synthesis of imaging and therapeutic agents in biological environments. The transition metal Pd has been widely used as a bioorthogonal catalyst, but bare Pd poses challenges in water solubility and catalyst stability in cellular environments. In this work, Pd(0) loaded amphiphilic polymeric nanoparticles are applied to shield Pd in the presence of living cells for the in situ generation of a fluorescent dye and anticancer drugs. Pd(0) loaded polymeric nanoparticles prepared by the reduction of the corresponding Pd(II)-polymeric nanoparticles are highly active in the deprotection of pro-rhodamine dye and anticancer prodrugs, giving significant fluorescence enhancement and toxigenic effects, respectively, in HepG2 cells. In addition, we show that the microstructure of the polymeric nanoparticles for scaffolding Pd plays a critical role in tuning the catalytic efficiency, with the use of the ligand triphenylphosphine as a key factor for improving the catalyst stability in biological environments.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/química , Antineoplásicos/química , Nanopartículas/química , Polímeros/química , Células Hep G2 , Catálise
11.
Int J Biol Macromol ; 259(Pt 2): 129242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199540

RESUMO

Doxorubicin (Dox), a chemotherapeutic agent, encounters challenges such as a short half-life, dose-dependent toxicity, and low solubility. In this context, the present study involved the fabrication of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) bearing P(HPMA-s-APMA) copolymeric nanoparticles (P(HPMA-s-APMA) NPs) and their investigation for efficient delivery of Dox. Furthermore, the synthesized nanoparticles (NPs) were coated with chitosan (Cht) to generate positively charged nanoformulations. The prepared formulations were evaluated for particle size, morphology, surface charge analysis, percentage encapsulation efficiency (EE%), and drug release studies. The anticancer activity of Cht-P(HPMA-s-APMA)-Dox NPs was assessed in the HeLa cancer cell line. The prepared P(HPMA-s-APMA)-Dox NPs exhibited an average particle size of 240-250 nm. Chitosan decorated P(HPMA-s-APMA)-Dox NPs displayed a significant increase in particle size, and the zeta potential shifted from negative to positive. The EE% for Cht-P(HPMA-s-APMA)-Dox NPs was calculated to be 68.06 %. The drug release studies revealed a rapid release of drug from Cht-P(HPMA-s-APMA)-Dox NPs at pH 4.8 than pH 7.4, demonstrating the pH-responsiveness of nanoformulation. Furthermore, the cell viability assay and internalization studies revealed that Cht-P(HPMA-s-APMA)-Dox NPs had a high cytotoxic response and significant cellular uptake. Hence, the Cht-P(HPMA-s-APMA)-Dox NPs appeared to be a suitable nanocarrier for effective, and safe chemotherapy.


Assuntos
Acrilamidas , Quitosana , Metacrilatos , Nanopartículas , Humanos , Doxorrubicina/farmacologia , Polímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos
12.
J Aerosol Med Pulm Drug Deliv ; 37(1): 30-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197850

RESUMO

Background: Pyrazinamide is a Biopharmaceutical Classification System class III antibiotic indicated for active tuberculosis. Methods: In the present work, pyrazinamide-loaded biodegradable polymeric nanoparticles (PNPs) based dry powder inhaler were developed using the double emulsion solvent evaporation technique and optimized using design of experiments to provide direct pulmonary administration with minimal side effects. Batches were characterized for various physicochemical and aerosol performance properties. Results: Optimized batch exhibited particle size of 284.5 nm, % entrapment efficiency of 71.82%, polydispersibility index of 0.487, zeta potential of -17.23 mV, and in vitro drug release at 4 hours of 79.01%. Spray-dried PNPs were evaluated for drug content, in vitro drug release, and kinetics. The particle mass median aerodynamic diameter was within the alveolar region's range (2.910 µm). In the trachea and lung, there was a 2.5- and 1.2-fold increase in in vivo deposition with respect to pure drug deposition, respectively. In vitro drug uptake findings showed that alveolar macrophages with pyrazinamide PNPs had a considerably higher drug concentration. Furthermore, accelerated stability studies were carried out for the optimized batch. Results indicated no significant change in the evaluation parameters, which showed stability of the formulation for at least a 6-month period. Conclusion: PNPs prepared using biodegradable polymers exhibited efficient pulmonary drug delivery with decent stability.


Assuntos
Nanopartículas , Tuberculose Pulmonar , Humanos , Pirazinamida/uso terapêutico , Administração por Inalação , Sistemas de Liberação de Medicamentos , Tuberculose Pulmonar/tratamento farmacológico , Polímeros/química , Polímeros/uso terapêutico , Nanopartículas/química , Tamanho da Partícula
13.
Adv Sci (Weinh) ; 10(27): e2301159, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526346

RESUMO

Excess reactive oxygen species (ROS) produced during strong or unfamiliar exercise cause exercise-induced gastrointestinal syndrome (EIGS), leading to poor health and decreased exercise performance. The application of conventional antioxidants can neither ameliorate EIGS nor improve exercise performance because of their rapid elimination and severe side effects on the mitochondria. Hence, a self-assembling nanoparticle-type antioxidant (RNPO ) that is selectively located in the gastrointestinal (GI) tract for an extended time after oral administration is developed. Interestingly, orally administered RNPO significantly enhances the running time until exhaustion in mice with increasing dosage, whereas conventional antioxidants (TEMPOL) tends to reduce the running time with increasing dosage. The running (control) and TEMPOL groups show severe damage in the GI tract and increased plasma lipopolysaccharide (LPS) levels after 80 min of running, resulting in fewer red blood cells (RBCs) and severe damage to the skeletal muscles and liver. However, the RNPO group is protected against GI tract damage and elevation of plasma LPS levels, similar to the nonrunning (sedentary) group, which prevents damage to the whole body, unlike in the control and TEMPOL groups. Based on these results, it is concluded that continuous scavenging of excessive intestinal ROS protects against gut damage and further improves exercise performance.


Assuntos
Antioxidantes , Nanopartículas , Camundongos , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Lipopolissacarídeos , Trato Gastrointestinal , Nanopartículas/uso terapêutico
14.
ACS Biomater Sci Eng ; 9(8): 4567-4572, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37523785

RESUMO

We here introduce a novel bioreducible polymer-based gene delivery platform enabling widespread transgene expression in multiple brain regions with therapeutic relevance following intracranial convection-enhanced delivery. Our bioreducible nanoparticles provide markedly enhanced gene delivery efficacy in vitro and in vivo compared to nonbiodegradable nanoparticles primarily due to the ability to release gene payloads preferentially inside cells. Remarkably, our platform exhibits competitive gene delivery efficacy in a neuron-rich brain region compared to a viral vector under previous and current clinical investigations with demonstrated positive outcomes. Thus, our platform may serve as an attractive alternative for the intracranial gene therapy of neurological disorders.


Assuntos
Técnicas de Transferência de Genes , Polímeros , Polímeros/metabolismo , Terapia Genética , Encéfalo/metabolismo
15.
Adv Sci (Weinh) ; 10(16): e2207010, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083240

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with high incidence rates of metastasis and cachexia. High circulating activin A, a homodimer of inhibin ßA subunits that are encoded by INHBA gene, predicts poor survival among PDAC patients. However, it still raises the question of whether activin A suppression renders favorable PDAC outcomes. Here, the authors demonstrate that activin A is abundantly detected in tumor and stromal cells on PDAC tissue microarray and mouse PDAC sections. In orthotopic male mice, activin A suppression, which is acquired by tumor-targeted Inhba siRNA using cholesterol-modified polymeric nanoparticles, retards tumor growth/metastasis and cachexia and improves survival when compared to scramble siRNA-treated group. Histologically, activin A suppression coincides with decreased expression of proliferation marker Ki67 but increased accumulation of α-SMAhigh fibroblasts and cytotoxic T cells in the tumors. In vitro data demonstrate that activin A promotes KPC cell proliferation and induces the downregulation of α-SMA and upregulation of IL-6 in pancreatic stellate cells (PSC) in the SMAD3-dependent mechanism. Moreover, conditioned media from activin A-stimulated PSC promoted KPC cell growth. Collectively, our data provide a mechanistic basis for tumor-promoting roles of activin A and support therapeutic potentials of tumor activin A suppression for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Camundongos , Animais , Caquexia/etiologia , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética
16.
Front Pharmacol ; 14: 1086581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007000

RESUMO

Introduction: The amalgamation of novel drug delivery techniques and potential drugs is considered the most promising tool for the treatment of diseases. In our study, we have employed N-isopropyl acrylamide, N-vinyl pyrrolidone, and acrylic acid (NIPAAM-VP-AA) copolymeric nanoparticles for delivering Ipomoea turpethum root extract. I. turpethum is a perennial herb (Convolvulaceae family) and has been used as medicine for ages. The present study was conducted to evaluate the safety of I. turpethum root extract-loaded NIPAAM-VP-AA polymeric nanoparticles (NVA-IT) in Wistar rats. Methods: An acute oral toxicity study was conducted in accordance with OECD guidelines 423 for the testing of chemicals. Different doses of NVA-IT i.e., 5 mg/kg, 50 mg/kg, 300 mg/kg, and 2000 mg/kg were administered to female Wistar rats in a stepwise manner using oral gavage. The toxicity signs were thoroughly observed for the next 14 days. At the end of the study, the blood and vital organs were harvested for hematological, biochemical, and histopathological studies. Result: No mortality or pathological anomalies were observed even at the highest dose which exemplifies that the lethal dose would be more than 2000 mg/kg body weight (GSH category 5). Behavioral changes, biochemical parameters, and histopathology of vital organs were normal after NVA-IT administration. Conclusion: This study demonstrated that NVA-IT nanoparticles are non-toxic and can be considered for therapeutic use in different diseases, such as inflammation, CNS diseases, Cancer, etc.

17.
Pharmaceutics ; 15(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36986636

RESUMO

Cancer develops with unexpected mutations and causes death in many patients. Among the different cancer treatment strategies, immunotherapy is promising with the benefits of high specificity and accuracy, as well as modulating immune responses. Nanomaterials can be used to formulate drug delivery carriers for targeted cancer therapy. Polymeric nanoparticles used in the clinic are biocompatible and have excellent stability. They have the potential to improve therapeutic effects while significantly reducing off-target toxicity. This review classifies smart drug delivery systems based on their components. Synthetic smart polymers used in the pharmaceutical industry, including enzyme-responsive, pH-responsive, and redox-responsive polymers, are discussed. Natural polymers derived from plants, animals, microbes, and marine organisms can also be used to construct stimuli-responsive delivery systems with excellent biocompatibility, low toxicity, and biodegradability. The applications of smart or stimuli-responsive polymers in cancer immunotherapies are discussed in this systemic review. We summarize different delivery strategies and mechanisms that can be used in cancer immunotherapy and give examples of each case.

18.
Polymers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850308

RESUMO

Alpha mangostin (AM) has potential anticancer properties for breast cancer. This study aims to assess the potential of chitosan nanoparticles coated with hyaluronic acid for the targeted delivery of AM (AM-CS/HA) against MCF-7 breast cancer cells. AM-CS/HA showed a spherical shape with an average diameter of 304 nm, a polydispersity index of 0.3, and a negative charge of 24.43 mV. High encapsulation efficiency (90%) and drug loading (8.5%) were achieved. AM released from AM-CS/HA at an acidic pH of 5.5 was higher than the physiological pH of 7.4 and showed sustained release. The cytotoxic effect of AM-CS/HA (IC50 4.37 µg/mL) on MCF-7 was significantly higher than AM nanoparticles without HA coating (AM-CS) (IC50 4.48 µg/mL) and AM (IC50 5.27 µg/mL). These findings suggest that AM-CS/HA enhances AM cytotoxicity and has potential applications for breast cancer therapy.

19.
Mol Pharm ; 20(2): 1138-1155, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36653946

RESUMO

Hydrophobic ion pairing (HIP) can successfully increase the drug loading and control the release kinetics of ionizable hydrophilic drugs, addressing challenges that prevent these molecules from reaching the clinic. Nevertheless, polymeric nanoparticle (PNP) formulation development requires trial-and-error experimentation to meet the target product profile, which is laborious and costly. Herein, we design a preformulation framework (solid-state screening, computational approach, and solubility in PNP-forming emulsion) to understand counterion-drug-polymer interactions and accelerate the PNP formulation development for HIP systems. The HIP interactions between a small hydrophilic molecule, AZD2811, and counterions with different molecular structures were investigated. Cyclic counterions formed amorphous ion pairs with AZD2811; the 0.7 pamoic acid/1.0 AZD2811 complex had the highest glass transition temperature (Tg; 162 °C) and the greatest drug loading (22%) and remained as phase-separated amorphous nanosized domains inside the polymer matrix. Palmitic acid (linear counterion) showed negligible interactions with AZD2811 (crystalline-free drug/counterion forms), leading to a significantly lower drug loading despite having similar log P and pKa with pamoic acid. Computational calculations illustrated that cyclic counterions interact more strongly with AZD2811 than linear counterions through dispersive interactions (offset π-π interactions). Solubility data indicated that the pamoic acid/AZD2811 complex has a lower organic phase solubility than AZD2811-free base; hence, it may be expected to precipitate more rapidly in the nanodroplets, thus increasing drug loading. Our work provides a generalizable preformulation framework, complementing traditional performance-indicating parameters, to identify optimal counterions rapidly and accelerate the development of hydrophilic drug PNP formulations while achieving high drug loading without laborious trial-and-error experimentation.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Naftóis/química , Nanopartículas/química , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Liberação Controlada de Fármacos
20.
ACS Nano ; 17(3): 1989-1997, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651824

RESUMO

To control stability in a biological medium, several factors affecting the zeta potential (ζ) of nanoparticles (NPs) must be considered, including complex interactions between the nanostructure and the composition of the protein corona (PC). Effective in silico methods (based on machine learning and quantitative structure-property relationship (QSPR) models) could help predict and characterize the relationship between the physicochemical properties of NP and the formation of PC and biological outcomes in the medium at an early stage of the experiment. However, the models currently developed are limited to simple descriptors that do not represent the complex interactions between the core, the coating, and their PC fingerprints. To be useful, the models developed should be described as a function of both the structural properties determined by the core and coating of the NPs and the biological medium determined by the formation of the protein corona. We have developed a set of complex descriptors that describe the quantitative relationship between the value of the zeta potential (ζ), core, the coating of NPs, and their PC fingerprints (the so-called nano-QSPR model). The nano-QSPR model was developed based on a genetic algorithm using a partial least-squares regression method (GA-PLS), which is characterized by high external predictive power (Q2EXT = 0.89). The GA-PLS model was developed using descriptors that describe (i) the core structure (determined by 7 different types of polymer-based NMs in the range of 20 different sizes), (ii) the coating structure with 7 different functional groups, and (iii) 80 different types of protein compositions adsorbed on the surface of the NPs. The presented study answers the question of how complex interactions between the corona and NP determine the zeta potential (ζ) of NP in a given medium. Moreover, our current study is a proof-of-concept that the zeta potential of NPs modeled on the original structure depends not only on the NPs themselves but also on the structure and properties determined by the NP core and coating, as well as the biological medium determined by the formation of the protein corona. On the basis of these results, our studies will be useful in determining the stability and mechanism of cell uptake, toxicity, and ability to predict the zeta potential of compounds not yet tested.


Assuntos
Nanopartículas , Nanoestruturas , Coroa de Proteína , Coroa de Proteína/química , Nanopartículas/química , Proteínas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA