Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuropharmacology ; 238: 109642, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392820

RESUMO

The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of Fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cß and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.


Assuntos
Síndrome de Angelman , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Camundongos , Animais , Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Hidrólise , Modelos Animais de Doenças , Camundongos Knockout , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas de Transporte , Proteína do X Frágil da Deficiência Intelectual/metabolismo
2.
Life (Basel) ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35330215

RESUMO

Using an in vivo method for the assessment of polyphosphoinositide (PI) hydrolysis, we examine whether spatial learning and memory extinction cause changes in mGlu5 metabotropic glutamate receptor signaling in the hippocampus and prefrontal cortex. We use the following five groups of mice: (i) naive mice; (ii) control mice exposed to the same environment as learner mice; (iii) leaner mice, trained for four days in a water maze; (iv) mice in which memory extinction was induced by six trials without the platform; (v) mice that spontaneously lost memory. The mGlu5 receptor-mediated PI hydrolysis was significantly reduced in the dorsal hippocampus of learner mice as compared to naive and control mice. The mGlu5 receptor signaling was also reduced in the ventral hippocampus and prefrontal cortex of learner mice, but only with respect to naive mice. Memory extinction was associated with a large up-regulation of mGlu5 receptor-mediated PI hydrolysis in the three brain regions and with increases in mGlu5 receptor and phospholipase-Cß protein levels in the ventral and dorsal hippocampus, respectively. These findings support a role for mGlu5 receptors in mechanisms underlying spatial learning and suggest that mGlu5 receptors are candidate drug targets for disorders in which cognitive functions are impaired or aversive memories are inappropriately retained.

3.
Pharmacol Res ; 170: 105691, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044128

RESUMO

Interkingdom communication between bacteria and host organisms is one of the most interesting research topics in biology. Quorum sensing molecules produced by Gram-negative bacteria, such as acylated homoserine lactones and quinolones, have been shown to interact with host cell receptors, stimulating innate immunity and bacterial clearance. To our knowledge, there is no evidence that these molecules influence CNS function. Here, we have found that low micromolar concentrations of the Pseudomonas aeruginosa quorum sensing autoinducer, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibited polyphosphoinositide hydrolysis in mouse brain slices, whereas four selected acylated homoserine lactones were inactive. PQS also inhibited forskolin-stimulated cAMP formation in brain slices. We therefore focused on PQS in our study. Biochemical effects of PQS were not mediated by the bitter taste receptors, T2R4 and T2R16. Interestingly, submicromolar concentrations of PQS could be detected in the serum and brain tissue of adult mice under normal conditions. Levels increased in five selected brain regions after single i.p. injection of PQS (10 mg/kg), peaked after 15 min, and returned back to normal between 1 and 4 h. Systemically administered PQS reduced spontaneous locomotor activity, increased the immobility time in the forced swim test, and largely attenuated motor response to the psychostimulant, methamphetamine. These findings offer the first demonstration that a quorum sensing molecule specifically produced by Pseudomonas aeruginosa is centrally active and influences cell signaling and behavior. Quorum sensing autoinducers might represent new interkingdom signaling molecules between ecological communities of commensal, symbiotic, and pathogenic microorganisms and the host CNS.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , AMP Cíclico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/farmacologia , Percepção de Quorum , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Interações Hospedeiro-Patógeno , Hidrólise , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Quinolonas/metabolismo
4.
Front Pharmacol ; 9: 804, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108503

RESUMO

mGlu5 receptor-mediated polyphosphoinositide (PI) hydrolysis is classically measured by determining the amount of radioactivity incorporated in inositolmonophosphate (InsP) after labeling of membrane phospholipids with radioactive inositol. Although this method is historically linked to the study of mGlu receptors, it is inappropriate for the assessment of mGlu5 receptor signaling in vivo. Using a new ELISA kit we showed that systemic treatment with the selective positive allosteric modulator (PAM) of mGlu5 receptors VU0360172 enhanced InsP formation in different brain regions of CD1 or C57Black mice. The action of VU0360172 was sensitive to the mGlu5 receptor, negative allosteric modulator (NAM), MTEP, and was abolished in mice lacking mGlu5 receptors. In addition, we could demonstrate that endogenous activation of mGlu5 receptors largely accounted for the basal PI hydrolysis particularly in the prefrontal cortex. This method offers opportunity for investigation of mGlu5 receptor signaling in physiology and pathology, and could be used for the functional screening of mGlu5 receptor PAMs in living animals.

5.
Neuropharmacology ; 128: 301-313, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29079293

RESUMO

mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca2+ mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.


Assuntos
Sistema Nervoso Central/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Sistema Nervoso Central/citologia , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hidrólise/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/genética
6.
Neurochem Res ; 41(4): 924-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26700429

RESUMO

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5(-/-) mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Retina/metabolismo , Animais , Bovinos , Glicina/análogos & derivados , Glicina/farmacologia , Hidrólise , Fosfatos de Inositol/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Resorcinóis/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA