Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Macromol Rapid Commun ; : e2400576, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283835

RESUMO

Skinless, hierarchical porous 3D polymer scaffolds are of critical importance in tissue engineering, enabling improved cell infiltration, nutrient, metabolite and energy exchange, and biomimetic structures, crucial for regenerative medicine, drug delivery, and advanced material applications. However, it is still a great challenge to construct this kind of material with traditional 3D printing techniques. Herein, a novel simple, and versatile in situ precipitation-assisted direct-write-3D printing strategy for skinless, hierarchical porous 3D scaffolds is reported. Homogenous ink containing molecularly dissolved fructose (soluble porogen molecule) and polymer (whether it is hydrophilic, hydrophobic or amphiphilic) is directly extruded into a nonsolvent bath, where simultaneously solidification of the polymer and in situ precipitation of the porogen molecules both on the exterior surface and inside the separated polymer fibers happen. Subsequently, by simply leaching the in situ formed porogen particles, skinless hierarchical porous polymeric 3D scaffolds can be obtained. It is believed that 3D printing, polymer/macromolecule-based scaffolds, especially the skinless hierarchical porous biomaterials, and the tissue engineering market can benefit tremendously from this simple and versatile approach.

2.
Adv Healthc Mater ; : e2401944, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246293

RESUMO

Macroporous hydrogels have shown significant promise in biomedical applications, particularly regenerative medicine, due to their enhanced nutrient and waste permeability, improved cell permissibility, and minimal immunogenicity. However, traditional methods of generating porous hydrogels require secondary post-processing steps or harmful reagents making simultaneous fabrication with bioactive factors and cells impossible. Therefore, a handheld printer is engineered for facile and continuous generation and deposition of hydrogel foams directly within the skin defect to form defect-specific macroporous scaffolds. Within the handheld system, a temperature-controlled microfluidic homogenizer is coupled with miniaturized liquid and air pumps to mix sterile air with gelatin methacryloyl (GelMA) at the desired ratio. An integrated photocrosslinking unit is then utilized to crosslink the printed foam in situ to form scaffolds with controlled porosity. The system is optimized to form reliable and uniform GelMA foams. The resulting foam scaffolds demonstrate mechanical properties with excellent flexibility making them suitable for wound healing applications. The results of in vitro cell culture on the scaffolds demonstrate significantly increased cellular activity compared to the solid hydrogel. The in vivo printed foam scaffolds enhanced the rate and quality of wound healing in mice with full-thickness wound without the use of biological materials.

3.
Int J Biol Macromol ; 278(Pt 4): 135014, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181354

RESUMO

Biocompatible scaffolds with high mechanical strengths that contain biodegradable components could boost bone regeneration compared with nondegradable bone repair materials. In this study, porous chitosan (CS)/hydroxyapatite (HA) scaffolds containing mesoporous SiO2-HA particles were fabricated through the freeze-drying process. According to field emission scanning electron microscopy (FESEM) results, combining mesoporous SiO2-HA particles in CS/HA scaffolds led to a uniform porous structure. It decreased pore sizes from 320 ± 1.1 µm to 145 ± 1.4 µm. Moreover, the compressive strength value of this scaffold was 25 ± 1.2 MPa. The in-vitro approaches exhibited good sarcoma osteogenic cell line (SAOS-2) adhesion, spreading, and proliferation, indicating that the scaffolds provided a suitable environment for cell cultivation. Also, in-vivo analyses in implanted defect sites of rats proved that the CS/HA/mesoporous SiO2-HA scaffolds could promote bone regeneration via enhancing osteoconduction and meliorating the expression of osteogenesis gene to 19.31 (about 5-fold higher compared to the control group) by exposing them to the bone-like precursors. Further, this scaffold's new bone formation percentage was equal to 90 % after 21 days post-surgery. Therefore, incorporating mesoporous SiO2-HA particles into CS/HA scaffolds can suggest a new future tissue engineering and regeneration strategy.


Assuntos
Regeneração Óssea , Quitosana , Durapatita , Osteogênese , Dióxido de Silício , Alicerces Teciduais , Quitosana/química , Alicerces Teciduais/química , Durapatita/química , Durapatita/farmacologia , Dióxido de Silício/química , Animais , Porosidade , Regeneração Óssea/efeitos dos fármacos , Ratos , Osteogênese/efeitos dos fármacos , Humanos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Linhagem Celular Tumoral , Masculino
4.
J Mech Behav Biomed Mater ; 159: 106684, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39178821

RESUMO

For conditions like osteoporosis, changes in bone pore geometry even when porosity is constant have been shown to correlate to increased fracture risk using techniques such as dual-energy x-ray absorptiometry (DXA) and computed tomography (CT). Additionally, studies have found that bone pore geometry can be characterized by ultrasound to determine fracture risk, since certain pore geometries can cause stress concentration which in turn will be a source for fracture. However, it is not yet fully understood if changes in pore geometry can be detected by ultrasound when the porosity is constant. Therefore, this study develops an unsupervised machine learning model classifying pore geometry between bioinspired and quadrilateral pore scaffolds with constant porosity using experimental ultrasound wave transmission data. Our results demonstrate that differences in pore geometry can be detected by ultrasound, even at constant porosity, and that these differences can be distinguished in an unsupervised manner with machine learning. For traumatic bone injuries and late-stage osteoporosis where fracture occurs, tissue scaffolds are used to aid the healing of fractures or bone loss. The scaffold design is optimized to match material properties closely with bone, and healing can be enhanced with ultrasound stimulation. In this study we predict the combined effects of ultrasound parameters, such as wave frequency and mode of displacement, and scaffold material properties on bone tissue growth. We therefore develop an unsupervised machine learning clustering model of bone tissue growth in the scaffolds using finite element analysis and bone growth algorithms evaluating effects of pore geometry, scaffold materials, ultrasound wave type and frequency, and mesenchymal stem cell distribution on bone tissue growth. The computational predictions of tissue growth agreed within 10% of comparable experimental studies. The data corresponding to pore geometry, mesenchymal stem cell distribution, and scaffold material demonstrate distinct clusters of total bone formation, while ultrasound frequency and mesenchymal stem cell distribution show distinct clusters in bone growth rate. These variables can be tuned to tailor the scaffold design and optimize the required amount and rate of bone growth to meet a patient's specific needs.


Assuntos
Aprendizado de Máquina , Alicerces Teciduais , Ondas Ultrassônicas , Alicerces Teciduais/química , Porosidade , Desenvolvimento Ósseo
5.
Bioact Mater ; 41: 312-335, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39161793

RESUMO

Zinc (Zn)-based biodegradable metals (BMs) fabricated through conventional manufacturing methods exhibit adequate mechanical strength, moderate degradation behavior, acceptable biocompatibility, and bioactive functions. Consequently, they are recognized as a new generation of bioactive metals and show promise in several applications. However, conventional manufacturing processes face formidable limitations for the fabrication of customized implants, such as porous scaffolds for tissue engineering, which are future direction towards precise medicine. As a metal additive manufacturing technology, laser powder bed fusion (L-PBF) has the advantages of design freedom and formation precision by using fine powder particles to reliably fabricate metallic implants with customized structures according to patient-specific needs. The combination of Zn-based BMs and L-PBF has become a prominent research focus in the fields of biomaterials as well as biofabrication. Substantial progresses have been made in this interdisciplinary field recently. This work reviewed the current research status of Zn-based BMs manufactured by L-PBF, covering critical issues including powder particles, structure design, processing optimization, chemical compositions, surface modification, microstructure, mechanical properties, degradation behaviors, biocompatibility, and bioactive functions, and meanwhile clarified the influence mechanism of powder particle composition, structure design, and surface modification on the biodegradable performance of L-PBF Zn-based BM implants. Eventually, it was closed with the future perspectives of L-PBF of Zn-based BMs, putting forward based on state-of-the-art development and practical clinical needs.

6.
Molecules ; 29(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39202905

RESUMO

Bone tissue exhibits self-healing properties; however, not all defects can be repaired without surgical intervention. Bone tissue engineering offers artificial scaffolds, which can act as a temporary matrix for bone regeneration. The aim of this study was to manufacture scaffolds made of poly(lactic acid), poly(ε-caprolactone), poly(propylene fumarate), and poly(ethylene glycol) modified with bioglass, beta tricalcium phosphate (TCP), and/or wollastonite (W) particles. The scaffolds were fabricated using a gel-casting method and observed with optical and scanning electron microscopes. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), wettability, and degradation tests were conducted. The highest content of TCP without W in the composition caused the highest hydrophilicity (water contact angle of 61.9 ± 6.3°), the fastest degradation rate (7% mass loss within 28 days), moderate ability to precipitate CaP after incubation in PBS, and no cytotoxicity for L929 cells. The highest content of W without TCP caused the highest hydrophobicity (water contact angle of 83.4 ± 1.7°), the lowest thermal stability, slower degradation (3% mass loss within 28 days), and did not evoke CaP precipitation. Moreover, some signs of cytotoxicity on day 1 were observed. The samples with both TCP and W showed moderate properties and the best cytocompatibility on day 4. Interestingly, they were covered with typical cauliflower-like hydroxyapatite deposits after incubation in phosphate-buffered saline (PBS), which might be a sign of their excellent bioactivity.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Osso e Ossos/efeitos dos fármacos , Camundongos , Polímeros/química , Linhagem Celular , Poliésteres/química , Teste de Materiais , Cerâmica/química , Fosfatos de Cálcio/química , Regeneração Óssea/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Fumaratos/química
7.
Materials (Basel) ; 17(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39203101

RESUMO

Silk fibroin (SF) extracted from silk is non-toxic and has excellent biocompatibility and biodegradability, making it an excellent biomedical material. SF-based soft materials, including porous scaffolds and hydrogels, play an important role in accurately delivering drugs to wounds, creating microenvironments for the adhesion and proliferation of support cells, and in tissue remodeling, repair, and wound healing. This article focuses on the study of SF protein-based soft materials, summarizing their preparation methods and basic applications, as well as their regenerative effects, such as drug delivery carriers in various aspects of tissue engineering such as bone, blood vessels, nerves, and skin in recent years, as well as their promoting effects on wound healing and repair processes. The authors expect SF soft materials to play an important role in the field of tissue repair.

8.
J Funct Biomater ; 15(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057304

RESUMO

In bone regeneration, combining natural polymer-based scaffolds with Bioactive Glasses (BGs) is an attractive strategy to improve the mechanical properties of the structure, as well as its bioactivity and regenerative potential. Methods: For this purpose, a well-studied alginate/hydroxyapatite (Alg/HAp) porous scaffold was enhanced with an experimental bioglass (BGMS10), characterized by a high crystallization temperature and containing therapeutic ions such as strontium and magnesium. This resulted in an improved biological response compared to 45S5 Bioglass®, the "gold" standard among BGs. Porous composite scaffolds were fabricated by freeze-drying technique and characterized by scanning electron microscopy and microanalysis, infrared spectroscopy, and microcomputed tomography. The mechanical properties and cytocompatibility of the new scaffold composition were also evaluated. The addition of bioglass to the Alg/HAp network resulted in a slightly lower porosity. However, despite the change in pore size, the MG-63 cells were able to better adhere and proliferate when cultured for one week on a BG scaffold compared to the control Alg/HAp scaffolds. Thus, our findings indicate that the combination of bioactive glass BGMS10 does not affect the structural and physicochemical properties of the Alg/HAp scaffold and confers bioactive properties to the structures, making the Alg/HAp-BGMS10 scaffold a promising candidate for future application in bone tissue regeneration.

9.
Adv Healthc Mater ; 13(23): e2400927, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38717232

RESUMO

In recent years, the demand for clinical bone grafting has increased. As a new solution for orthopedic implants, polyether ether ketone (PEEK, crystalline PAEK) has excellent comprehensive performance and is practically applied in the clinic. In this research, a noteworthy elevated scheme to enhance the performance of PEEK scaffolds is presented. The amorphous aggregated poly (aryl ether ketone) (PAEK) resin is prepared as the matrix material, which maintains high mechanical strength and can be processed through the solution. So, the tissue engineering scaffolds with multilevel pores can be printed by low-temperature deposited manufacturing (LDM) to improve biologically inert scaffolds with smooth surfaces. Also, the feature of PAEK's solution processing is profitable to uniformly add the functional components for bone repair. Ultimately, A system of orthopedic implantable PAEK material based on intermolecular interactions, surface topology, and surface modification is established. The specific steps include synthesizing PAEK that contain polar carboxyl structures, preparing bioinks and fabricating scaffolds by LDM, preparation of scaffolds with strontium-doped mineralized coatings, evaluation of their osteogenic properties in vitro and in vivo, and investigation on the effect and mechanism of scaffolds in promoting osteogenic differentiation. This work provides an upgraded system of PAEK implantable materials for clinical application.


Assuntos
Benzofenonas , Osteogênese , Polímeros , Estrôncio , Alicerces Teciduais , Alicerces Teciduais/química , Estrôncio/química , Benzofenonas/química , Porosidade , Animais , Polímeros/química , Osteogênese/efeitos dos fármacos , Cetonas/química , Engenharia Tecidual/métodos , Polietilenoglicóis/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Temperatura Baixa , Coelhos , Camundongos , Diferenciação Celular/efeitos dos fármacos
10.
Tissue Cell ; 88: 102390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663113

RESUMO

Despite advancements in medical care, the management of bone injuries remains one of the most significant challenges in the fields of medicine and sports medicine globally. Bone tissue damage is often associated with aging, reduced quality of life, and various conditions such as trauma, cancer, and infection. While bone tissue possesses the natural capacity for self-repair and regeneration, severe damage may render conventional treatments ineffective, and bone grafting may be limited due to secondary surgical procedures and potential disease transmission. In such cases, bone tissue engineering has emerged as a viable approach, utilizing cells, scaffolds, and growth factors to repair damaged bone tissue. This research shows a comprehensive review of the current literature on the most important and effective methods and materials for improving the treatment of these injuries. Commonly employed cell types include osteogenic cells, embryonic stem cells, and mesenchymal cells, while scaffolds play a crucial role in bone tissue regeneration. To create an effective bone scaffold, a thorough understanding of bone structure, material selection, and examination of scaffold fabrication techniques from inception to the present day is necessary. By gaining insights into these three key components, the ability to design and construct appropriate bone scaffolds can be achieved. Bone tissue engineering scaffolds are evaluated based on factors such as strength, porosity, cell adhesion, biocompatibility, and biodegradability. This article examines the diverse categories of bone scaffolds, the materials and techniques used in their fabrication, as well as the associated merits and drawbacks of these approaches. Furthermore, the review explores the utilization of various scaffold types in bone tissue engineering applications.


Assuntos
Traumatismos em Atletas , Doenças Ósseas , Osso e Ossos , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Alicerces Teciduais/química , Doenças Ósseas/terapia , Osso e Ossos/lesões , Traumatismos em Atletas/terapia , Animais , Regeneração Óssea
11.
Int J Biol Macromol ; 267(Pt 1): 131438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583845

RESUMO

A glutenin (G)-chitosan (CS) complex (G-CS) was cross-linked by water annealing with aim to prepare structured 3D porous cultured meat scaffolds (CMS) here. The CMS has pore diameters ranging from 18 to 67 µm and compressive moduli from 16.09 to 60.35 kPa, along with the mixing ratio of G/CS. SEM showed the porous organized structure of CMS. FTIR and CD showed the increscent content of α-helix and ß-sheet of G and strengthened hydrogen-bondings among G-CS molecules, which strengthened the stiffness of G-CS. Raman spectra exhibited an increase of G concentration resulted in higher crosslinking of disulfide-bonds in G-CS, which aggrandized the bridging effect of G-CS and maintained its three-dimensional network. Cell viability assay and immuno-fluorescence staining showed that G-CS effectively facilitated the growth and myogenic differentiation of porcine skeletal muscle satellite cells (PSCs). CLSM displayed that cells first occupied the angular space of hexagon and then ring-growth circle of PSCs were orderly formed on G-CS. The texture and color of CMS which loaded proliferated PSCs were fresh-meat like. These results showed that physical cross-linked G-CS scaffolds are the biocompatible and stable adaptable extracellular matrix with appropriate architectural cues and natural micro-environment for structured CM models.


Assuntos
Quitosana , Carne in vitro , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Porosidade , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
12.
Biofabrication ; 16(3)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38569492

RESUMO

Tissue engineering has emerged as an advanced strategy to regenerate various tissues using different raw materials, and thus it is desired to develop more approaches to fabricate tissue engineering scaffolds to fit specific yet very useful raw materials such as biodegradable aliphatic polyester like poly (lactide-co-glycolide) (PLGA). Herein, a technique of 'wet 3D printing' was developed based on a pneumatic extrusion three-dimensional (3D) printer after we introduced a solidification bath into a 3D printing system to fabricate porous scaffolds. The room-temperature deposition modeling of polymeric solutions enabled by our wet 3D printing method is particularly meaningful for aliphatic polyester, which otherwise degrades at high temperature in classic fuse deposition modeling. As demonstration, we fabricated a bilayered porous scaffold consisted of PLGA and its mixture with hydroxyapatite for regeneration of articular cartilage and subchondral bone. Long-termin vitroandin vivodegradation tests of the scaffolds were carried out up to 36 weeks, which support the three-stage degradation process of the polyester porous scaffold and suggest faster degradationin vivothanin vitro. Animal experiments in a rabbit model of articular cartilage injury were conducted. The efficacy of the scaffolds in cartilage regeneration was verified through histological analysis, micro-computed tomography (CT) and biomechanical tests, and the influence of scaffold structures (bilayerversussingle layer) onin vivotissue regeneration was examined. This study has illustrated that the wet 3D printing is an alternative approach to biofabricate tissue engineering porous scaffolds based on biodegradable polymers.


Assuntos
Cartilagem Articular , Animais , Coelhos , Porosidade , Microtomografia por Raio-X , Temperatura , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Polímeros , Poliésteres , Impressão Tridimensional
13.
J Funct Biomater ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535250

RESUMO

Bone tissue is one of the most transplanted tissues. The ageing population and bone diseases are the main causes of the growing need for novel treatments offered by bone tissue engineering. Three-dimensional (3D) scaffolds, as artificial structures that fulfil certain characteristics, can be used as a temporary matrix for bone regeneration. In this study, we aimed to fabricate 3D porous polymer scaffolds functionalized with tricalcium phosphate (TCP) particles for applications in bone tissue regeneration. Different combinations of poly(lactic acid) (PLA), poly(ethylene glycol) (PEG with molecular weight of 600 or 2000 Da) and poly(ε-caprolactone) (PCL) with TCP were blended by a gel-casting method combined with rapid heating. Porous composite scaffolds with pore sizes from 100 to 1500 µm were obtained. ATR-FTIR, DSC, and wettability tests were performed to study scaffold composition, thermal properties, and hydrophilicity, respectively. The samples were observed with the use of optical and scanning electron microscopes. The addition of PCL to PLA increased the hydrophobicity of the composite scaffolds and reduced their susceptibility to degradation, whereas the addition of PEG increased the hydrophilicity and degradation rates but concomitantly resulted in enhanced creation of rounded mineral deposits. The scaffolds were not cytotoxic according to an indirect test in L929 fibroblasts, and they supported adhesion and growth of MG-63 cells when cultured in direct contact.

14.
Small Methods ; 8(7): e2301518, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517272

RESUMO

Ice-templated porous biomaterials possess transformative potential in regenerative medicine; yet, scaling up ice-templating processes for broader applications-owing to inconsistent pore formation-remains challenging. This study reports an innovative semi-solid freeze-casting technique that draws inspiration from semi-solid metal processing (SSMP) combined with ice cream-production routines. This versatile approach allows for the large-scale assembly of various materials, from polymers to inorganic particles, into isotropic 3D scaffolds featuring uniformly equiaxed pores throughout the centimeter scale. Through (cryo-)electron microscopy, X-ray tomography, and finite element modeling, the structural evolution of ice grains/pores is elucidated, demonstrating how the method increases the initial ice nucleus density by pre-fabricating a semi-frozen slurry, which facilitates a transition from columnar to equiaxed grain structures. For a practical demonstration, as-prepared scaffolds are integrated into a bilayer tissue patch using biodegradable waterborne polyurethane (WPU) for large-scale oral mucosal reconstruction in minipigs. Systematic analyses, including histology and RNA sequencing, prove that the patch modulates the healing process toward near-scarless mucosal remodeling via innate and adaptive immunomodulation and activation of pro-healing genes converging on matrix synthesis and epithelialization. This study not only advances the field of ice-templating fabrication but sets a promising precedent for scaffold-based large-scale tissue regeneration.


Assuntos
Congelamento , Mucosa Bucal , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Porosidade , Suínos , Engenharia Tecidual/métodos , Porco Miniatura , Poliuretanos/química , Materiais Biocompatíveis/química , Gelo , Medicina Regenerativa/métodos
15.
Front Bioeng Biotechnol ; 12: 1343294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333080

RESUMO

Polyetheretherketone (PEEK) has been one of the most promising materials in bone tissue engineering in recent years, with characteristics such as biosafety, corrosion resistance, and wear resistance. However, the weak bioactivity of PEEK leads to its poor integration with bone tissues, restricting its application in biomedical fields. This research effectively fabricated composite porous scaffolds using a combination of PEEK, nano-hydroxyapatite (nHA), and carbon fiber (CF) by the process of fused deposition molding (FDM). The experimental study aimed to assess the impact of varying concentrations of nHA and CF on the biological performance of scaffolds. The incorporation of 10% CF has been shown to enhance the overall mechanical characteristics of composite PEEK scaffolds, including increased tensile strength and improved mechanical strength. Additionally, the addition of 20% nHA resulted in a significant increase in the surface roughness of the scaffolds. The high hydrophilicity of the PEEK composite scaffolds facilitated the in vitro inoculation of MC3T3-E1 cells. The findings of the study demonstrated that the inclusion of 20% nHA and 10% CF in the scaffolds resulted in improved cell attachment and proliferation compared to other scaffolds. This suggests that the incorporation of 20% nHA and 10% CF positively influenced the properties of the scaffolds, potentially facilitating bone regeneration. In vitro biocompatibility experiments showed that PEEK composite scaffolds have good biosafety. The investigation on osteoblast differentiation revealed that the intensity of calcium nodule staining intensified, along with an increase in the expression of osteoblast transcription factors and alkaline phosphatase activities. These findings suggest that scaffolds containing 20% nHA and 10% CF have favorable properties for bone induction. Hence, the integration of porous PEEK composite scaffolds with nHA and CF presents a promising avenue for the restoration of bone defects using materials in the field of bone tissue engineering.

16.
Macromol Biosci ; 24(3): e2300393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37904644

RESUMO

Achieving surgical success in orthopedic patients with metabolic disease remains a substantial challenge. Diabetic patients exhibit a unique tissue microenvironment consisting of high levels of reactive oxygen species (ROS), which promotes osteoclastic activity and leads to decreased bone healing. Alternative solutions, such as synthetic grafts, incorporating progenitor cells or growth factors, can be costly and have processing constraints. Previously, the potential for thiol-methacrylate networks to sequester ROS while possessing tunable mechanical properties and degradation rates has been demonstrated. In this study, the ability to fabricate thiol-methacrylate interconnected porous scaffolds using emulsion templating to create monoliths with an average porosity of 97.0% is reported. The average pore sizes of the scaffolds range from 27 to 656 µm. The scaffolds can sequester pathologic levels of ROS via hydrogen peroxide consumption and are not impacted by sterilization. Subcutaneous implantation shows no signs of acute toxicity. Finally, in a 6-week bilateral calvarial defect model in Zucker diabetic fatty rats, ROS scaffolds increase new bone volume by 66% over sham defects. Histologic analysis identifies woven bone infiltration throughout the scaffold and neovascularization. Overall, this study suggests that porous thiol-methacrylate scaffolds may improve healing for bone grafting applications where high levels of ROS hinder bone growth.


Assuntos
Diabetes Mellitus , Polímeros , Estirenos , Alicerces Teciduais , Humanos , Ratos , Animais , Engenharia Tecidual , Espécies Reativas de Oxigênio , Ratos Zucker , Porosidade , Metacrilatos , Compostos de Sulfidrila
17.
Adv Biol (Weinh) ; 8(2): e2300482, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955859

RESUMO

Scaffold pore architecture is shown to influence stem cell fate through various avenues. It is demonstrated that microporous annealed particle (MAP) microgel diameter can be tuned to control scaffold pore size and, in turn, modulate mesenchymal stem cell (MSC) survivability, proliferation, metabolism, and migration, thereby enhancing bioactivity and guiding future applications of MAP for regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Proliferação de Células
18.
J Biomed Mater Res B Appl Biomater ; 112(1): e35337, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37795764

RESUMO

In this study, multi-scale triply periodic minimal surface (TPMS) porous scaffolds with uniform and radial gradient distribution on pore size were printed based on the selective laser melting technology, and the influences of porosity, pore size and radial pore size distribution on compression mechanical properties, cell behavior, and bone regeneration behavior were analyzed. The results showed that the compression performance of the uniform porous scaffolds with high porosity was similar to that of cancellous bone of pig tibia, and the gradient porous scaffolds have higher elastic modulus and compressive toughness. After 4 days of cell culture, cells were distributed on the surface of scaffolds mostly, and the number of adherent cells was higher on the small pore size porous scaffolds; After 7 days, the area and density of cell proliferation on the scaffolds were improved; After 14 days, the cells on the small pore size scaffolds tended to migrate to adjacent pores. Animal implantation experiments showed that collagen fiber osteoid was intermittent on scaffolds with high porosity and large pore size, which was not conducive to bone formation. The appropriate pore size and porosity of bone regeneration were 792 um and 83%, respectively, and the regenerative ability of gradient pore size was better than that of uniform pore size. Our study explains the rules of TPMS gyroid structure parameters on compression performance, cell response and bone regeneration, and provides a reference value for the design of bone repair scaffolds for clinical orthopedics.


Assuntos
Osso Esponjoso , Alicerces Teciduais , Animais , Suínos , Porosidade , Alicerces Teciduais/química , Regeneração Óssea , Impressão Tridimensional , Engenharia Tecidual/métodos
19.
ACS Biomater Sci Eng ; 9(12): 6734-6744, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939039

RESUMO

Poly(vinyl alcohol) (PVA) exhibits a wide range of potential applications in the biomedical field due to its favorable mechanical properties and biocompatibility. However, few studies have been carried out on selective laser sintering (SLS) of PVA due to its poor thermal processability. In this study, in order to impart PVA powder the excellent thermal processability, the molecular complexation technology was performed to destroy the strong hydrogen bonds in PVA and thus significantly reduced the PVA melting point and crystallinity to 190.9 °C and 27.9%, respectively. The modified PVA (MPVA) was then compounded with hydroxyapatite (HA) to prepare PVA/HA composite powders suitable for SLS 3D printing. The final SLS 3D-printed MPVA/HA composite porous scaffolds show high precision and interconnected pores with a porosity as high as 68.3%. The in vitro cell culture experiments revealed that the sintered composite scaffolds could significantly promote the adhesion and proliferation of osteoblasts and facilitate bone regeneration, and the quantitative real-time polymerase chain reaction results further demonstrate that the printed MPVA/20HA scaffold could significantly enhance the expression levels of both early osteogenic-specific marker of alkaline phosphatase stain and runt-related transcription factor 2. Meanwhile, in in vivo experiments, it is encouragingly found that the resultant MPVA/20HA SLS 3D-printed part has an obvious effect on promoting the growth of new bone tissue as well as a better bone regeneration capability. This work could provide a promising strategy for fabrication of PVA scaffolds through SLS 3D printing, exhibiting a great potential for clinical applications in bone tissue engineering.


Assuntos
Durapatita , Alicerces Teciduais , Durapatita/farmacologia , Durapatita/química , Alicerces Teciduais/química , Porosidade , Álcool de Polivinil/química , Etanol , Impressão Tridimensional
20.
Biomed Mater ; 18(6)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37827164

RESUMO

The optimized proline-rich antimicrobial peptide B7-005 was loaded on bone scaffolds based on polysaccharides and hydroxyapatite. Alginate was firstly chosen in order to exploit its negative charges, which allowed an efficient B7-005 loading but hindered its release, due to the strong interactions with the positive charged peptide. Hence, alginate was substituted with agarose which allowed to prepare scaffolds with similar structure, porosity, and mechanical performance than the ones prepared with alginate and hydroxyapatite. Moreover, agarose scaffolds could release B7-005 within the first 24 h of immersion in aqueous environment. The peptide did not impaired MG-63 cell adhesion and proliferation in the scaffold, and a positive cell proliferation trend was observed up to two weeks. The released B7-005 was effective against the pathogensE. coli, K. pneumoniae, andA. baumannii, but not againstS. aureusandP. aeruginosa, thus requiring further tuning of the system to improve its antimicrobial activity.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Alginatos/química , Durapatita/química , Sefarose , Porosidade , Peptídeos Antimicrobianos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA