Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
J Ethnopharmacol ; : 118690, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142621

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Postmenopausal osteoporosis (PMOP) has been considered as a major causative factor for bone-joint pain and inducing pathologic fractures. Bu-Sui-Dan (BSD), a classic ancient herbal formula, has been shown to exhibit osteoprotective effects by promoting bone marrow development and bone growth. However, the exact mechanism of BSD are still unexplored. AIM OF STUDY: The study aimed to investigate the protective effect of BSD against osteoporotic injury, and to explore whether BSD regulated BMSCs' osteogenic differentiation by targeting VGLL4, which in turn improved PMOP. MATERIALS AND METHODS: The anti-osteoporotic effect of BSD was studied in ovariectomized (OVX) rats and bone marrow mesenchymal stem cells (BMSCs). Micro-CT imaging and HE staining were performed, and the levels of osteogenic protein RUNX2 and osteogenesis- related factor VGLL4 were determined. Co-immunoprecipitation (Co-IP) was further employed to delve into the effects of BSD on the interactions between TEAD4 and RUNX2. The key osteogenic factors 1ALP, COLl1A1, and Osterix expression were detected by RT-qPCR. Co-IP and proximity ligation assay (PLA) were employed to scrutinize the influence of BSD on TEAD4 and RUNX2 inter-binding. Moreover, VGLL4 knockdown in BMSCs was conducted to confirm the role of VGLL4 in the therapeutic mechanism of BSD. RESULTS: BSD showed a dose-dependent protective effect against osteoporotic injury, as evidenced by improvement in bone volume, bone microarchitecture, and histomorphometry. Additionally, BSD treatment increased the levels of RUNX2 and its downstream target genes including ALP, COL1A1, and Osterix. Moreover, BSD upregulated VGLL4 expression and lessened TEAD4-RUNX2 interactions. In BMSCs experiment, BSD-containing serum could promote osteogenic differentiation of BMSCs, boosted the expression of osteogenesis-related factors and VGLL4 level. The knockdown of VGLL4 in BMSCs diminished the promotion effect of BSD in osteoblast differentiation, suggesting that VGLL4 play a vital role in the therapeutic effects exerted by BSD. CONCLUSION: BSD ameliorated osteoporosis injury and promoted osteoblast differentiation through upregulation of VGLL4 levels, which in turn antagonized TEAD4-mediated RUNX2 transcriptional repression. Our study implied that BSD may be an osteoporosis therapeutic agent.

2.
Am J Transl Res ; 16(7): 3395-3404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114689

RESUMO

OBJECTIVE: To explore the efficacy and safety of tibolone combined with zoledronic acid in the treatment of postmenopausal osteoporosis (PMO). METHODS: We conducted a retrospective analysis of 121 PMO patients from March 2019 to July 2021. Patients were divided into two groups based on treatment regimen: an observation group (n=62) receiving zoledronic acid combined with tibolone and a control group (n=59) receiving tibolone monotherapy. We evaluated and compared therapeutic efficacy, bone mineral density, bone metabolism markers (osteocalcin, serum C-terminal telopeptide of type I collagen, and bone alkaline phosphatase), pain, knee joint function, incidence of fragility fractures, and adverse reactions. Logistic regression analysis was used to evaluate risk factors affecting treatment efficacy. RESULTS: The observation group showed a significantly higher therapeutic effect (96.77%) compared to the control group (83.05%), and a lower incidence of fragility fractures (P=0.012). Before treatment, there were no significant differences in bone mineral density, bone metabolism markers, pain status, or knee function between the two groups (all P>0.05). However, after treatment, evaluations showed marked improvements in these parameters in both groups, with more significant enhancements observed in the observation group (all P<0.001). The incidence of adverse reactions did not significantly differ between the groups (20.97% vs 13.56%, P=0.282). Logistic regression analysis identified the use of tibolone combined with zoledronic acid as a protective factor for effective treatment. CONCLUSIONS: Tibolone combined with zoledronic acid significantly increases bone mineral density, improves bone metabolism, and reduces pain in PMO patients, with a safety profile comparable to that of monotherapy. This regimen should be considered for clinical use in treating PMO.

3.
Bone ; 188: 117224, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117162

RESUMO

Postmenopausal osteoporosis (PMOP) is a metabolic disorder characterized by the loss of bone density, which increases the risk of developing complications such as fractures. A pivotal factor contributing to the onset of PMOP is the diminished osteogenic differentiation capacity of bone marrow mesenchymal stem cells (BMSCs). MicroRNAs (miRNAs) play a substantial role in this process; however, their specific impact on regulating BMSCs osteogenesis remains unclear. Studies have evidenced a reduced expression of miR-18a-5p in PMOP, and concomitantly, our observations indicate an augmented expression of miR-18a-5p during the osteogenic differentiation of BMSCs. This investigation seeks to elucidate the regulatory influence of miR-18a-5p on BMSC osteogenic differentiation and the underlying mechanisms. In vitro experiments demonstrated that the overexpression of miR-18a-5p facilitated the osteogenic differentiation of BMSCs, while the downregulation of miR-18a-5p yielded converse outcomes. Mechanistically, We employed bioinformatics techniques to screen out the target gene Notch2 of miR-18a-5p. Subsequently, dual-luciferase reporter gene assays and rescue experiments substantiated that miR-18a-5p promotes BMSC osteogenic differentiation by suppressing Notch2. Finally, miR-18a-5p was overexpressed via adenovirus injection into the femoral bone marrow cavity, with results demonstrating its capability to enhance osteogenic differentiation and alleviate PMOP symptoms. Our findings disclose that miR-18a-5p fosters osteogenic differentiation of BMSC by inhibiting Notch2, thereby offering novel targets and strategies for PMOP treatment.

4.
Bioact Mater ; 41: 336-354, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39161794

RESUMO

Postmenopausal osteoporosis (PMOP) is a prevalent condition among elderly women. After menopause, women exhibit decreased iron excretion, which is prone to osteoporosis. To design a specific titanium implant for PMOP, we first analyze miRNAs and DNA characteristics of postmenopausal patients with and without osteoporosis. The results indicate that iron overload disrupts iron homeostasis in the pathogenesis of PMOP. Further experiments confirm that iron overload can cause lipid peroxidation and ferroptosis of MSCs, thus breaking bone homeostasis. Based on the findings above, we have designed a novel Ti implant coated with nanospheres of caffeic acid (CA) and deferoxamine (DFO). CA can bind on the Ti surface through the two adjacent phenolic hydroxyls and polymerize into polycaffeic acid (PCA) dimer, as well as the PCA nanospheres with the repetitive 1,4-benzodioxan units. DFO was grafted with PCA through borate ester bonds. The experimental results showed that modified Ti can inhibit the ferroptosis of MSCs in the pathological environment of PMOP and promote osseointegration in two main ways. Firstly, DFO was released under high oxidative stress, chelating with excess iron and decreasing the labile iron pool in MSCs. Meanwhile, CA and DFO activated the KEAP1/NRF2/HMOX1 pathway in MSCs and reduced the level of intracellular lipid peroxidation. So, the ferroptosis of MSCs is inhibited by promoting the SLC7A11/GSH/GPX4 pathway. Furthermore, the remained CA coating on the Ti surface could reduce the extracellular oxidative stress and glutathione level. This study offers a novel inspiration for the specific design of Ti implants in the treatment of PMOP.

5.
Immun Inflamm Dis ; 12(8): e1365, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092766

RESUMO

OBJECTIVE: This study aims to investigate the correlation between changes in bone mineral density (BMD) in postmenopausal women and circulating inflammatory markers. METHODS: This retrospective study focused on postmenopausal women admitted to the orthopedic department of Suzhou Benq Medical Center from June 2022 to December 2023, following predetermined inclusion and exclusion criteria. We retrospectively collected data on initial blood routine test results and bone density measurements for all study subjects upon admission, including parameters such as white blood cell count (WBC), C-reactive protein, interleukin-6 (IL-6), and procalcitonin (PCT). Additionally, the systemic immune-inflammation index (SII) was calculated using neutrophil count, lymphocyte count, and platelet count. Statistical analyses using SPSS and GraphPad software were performed to assess the correlation between bone density and inflammatory markers. RESULTS: Patients were classified into three groups based on BMD results, including 60 individuals in the osteoporosis (OP) group, 127 individuals in the osteopenia group, and 37 individuals in the Normal group, respectively. Principal component analysis analysis suggested that WBC, SII, and postmenopausal OP (PMOP) held significant feature values. Correlation analysis indicated a correlation between WBC (p = 0.021), IL-6 (p = 0.044), SII (p = 0.034), and PMOP. One-way ANOVA analysis revealed significant differences in IL-6 (p = 0.0179), SII (p = 0.0210), and PCT (p = 0.0200) among the three groups. Finally, ROC curve analysis demonstrated that SII (area under the curve = 0.716) has predictive value for PMOP. CONCLUSION: This study identified a certain predictive value for PMOP through the assessment of inflammatory markers in peripheral blood using routine blood tests.


Assuntos
Biomarcadores , Densidade Óssea , Pós-Menopausa , Humanos , Feminino , Pós-Menopausa/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Biomarcadores/sangue , Idoso , Inflamação/sangue , Inflamação/diagnóstico , Interleucina-6/sangue , Proteína C-Reativa/análise , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/diagnóstico , Contagem de Leucócitos , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/diagnóstico , Curva ROC
6.
Arch Osteoporos ; 19(1): 69, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096323

RESUMO

The association between live microbe intake and osteoporosis in postmenopausal women remains unknown. The research findings indicated that an increased intake of live microbes through dietary sources was associated with a low prevalence of osteoporosis among postmenopausal women. PURPOSE: To investigate the relationship between the consumption of live microbes in the diet and osteoporosis in postmenopausal women. METHODS: A cross-sectional investigation using data obtained from the National Health and Nutrition Examination Survey was conducted. Participants were classified into three groups by using the dietary live microbe classification system developed by Sanders. Dual x-ray absorptiometry was used to measure body mineral density, and osteoporosis was diagnosed according to the World Health Organization criteria. We conducted a crude and adjusted multivariate logistic regression analysis, and utilized the restricted cubic splines model to assess the correlation between the consumption of live microbes in the diet and osteoporosis in postmenopausal women. RESULTS: A total of 1378 women who had undergone menopause were enrolled in the study. After controlling for potential covariates, individuals with a high consumption of live microbes in their diet exhibited a notably low prevalence of osteoporosis in comparison to those with a low intake of dietary live microbes (odd ratio: 0.46, 95% confidence interval: 0.23, 0.93, P = 0.03). Subgroup analysis showed the stability of the results, and restricted cubic splines showed an approximate L-shape curve. CONCLUSIONS: In this research, a higher consumption of live microbes in the diet was linked to a low prevalence of osteoporosis in postmenopausal women.


Assuntos
Dieta , Osteoporose Pós-Menopausa , Humanos , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Prevalência , Osteoporose Pós-Menopausa/epidemiologia , Dieta/estatística & dados numéricos , Estados Unidos/epidemiologia , Idoso , Inquéritos Nutricionais , Pós-Menopausa , Absorciometria de Fóton
7.
Arch Osteoporos ; 19(1): 61, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026053

RESUMO

INTRODUCTION: This systematic review and meta-analysis was conducted as part of the update of Moroccan recommendations for the management of postmenopausal osteoporosis. Its aim was to estimate the prevalence of postmenopausal osteoporosis in Morocco, based on available bibliographic data. METHODS: We conducted a systematic search of the Medline/PubMed, Scopus, and Embase databases to identify articles published between January 2000 and January 2024. We included all observational studies reporting the prevalence of osteoporosis in postmenopausal women in Morocco. Two reviewers independently contributed to the study selection and data extraction. We assessed the risk of bias in the included studies using the Joanna Briggs Institute tool. Statistical analyses were performed using Stata with the Freeman-Tukey double arcsine transformation. Heterogeneity was assessed using the I2 test statistic. Meta-regression analysis was used to investigate the effect of the date on the prevalence. Publication bias was assessed by DOI plots and the LFK index. RESULTS: An electronic search found a total of 161 citations from the databases. After excluding the irrelevant articles, 17 eligible studies were included. This meta-analysis included 5097 postmenopausal women. The pooled prevalence of postmenopausal osteoporosis was 32% (95% CI 28-36). Heterogeneity was statistically significant (I2 = 89.67%). There was no significant difference between subgroup analyses performed by risk of bias and sample size. The prevalence rate was significantly higher in 2006-2012 (36%; 95% CI 31-42; I2 = 88.7%; p < 0.001) than in 2013-2019 (27%; 95% CI 22-32; I2 = 85.9%; p < 0.001). Meta-regression showed that the prevalence of osteoporosis decreases very slightly (0.016% per year). This decrease becomes nonsignificant if only studies with a low risk of bias are included in the meta-regression (coefficient - 7.77, p = 0.667, I2 0%). No publication bias was detected in this meta-analysis. CONCLUSION: Our results indicate that postmenopausal osteoporosis is prevalent in Morocco, which is a developing country; however, the prevalence of this disease is aligned with that of industrialized countries.


Assuntos
Osteoporose Pós-Menopausa , Humanos , Marrocos/epidemiologia , Osteoporose Pós-Menopausa/epidemiologia , Feminino , Prevalência
8.
Arch Bone Jt Surg ; 12(7): 522-530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070882

RESUMO

Objective: Given the bone sensitivity to mechanical stimulus, bone-loading exercises and applying the Pulsed Electromagnetic Fields (PEMF(s)) are recommended for promoting bone strength. In this context, these two interventions 's effect on bone turnover markers (BTMs) in osteoporosis patients is yet to be clarified; consequently, an attempt is made in this study to compare the effect of these two interventions on bone turnover markers in women with Postmenopausal Osteoporosis (PMOP). Methods: This study is design as a randomized, single-center, three-arms, controlled trial. A total of 51 women with PMOP will be randomly assigned to three groups of 17, using opaque, sealed envelopes containing labels for A, B, and C groups. Group A) will receive bone-loading exercises, B) will follow the PEMF(s) and C) will be exposed to the combination of A and B. These three groups will require intervention for 24 sessions (2 sessions/week) next to their routine medical treatment (Alendronate+ Calcium+ Vitamin D). The primary outcome of this study is the serum biomarker of bone formation (bone-specific alkaline phosphatase, BSALP) and resorption (N-terminal telopeptide, NTX). The secondary outcomes consist of thoracic kyphosis angle, fear of falling, and quality of life. The outcomes are measured three times: at baseline, after 24 sessions of intervention, and at 12 weeks follow-up. A primary outcome will be measured and reported by a laboratory expert who is blinded to the participant grouping. Result: The trial has the code of ethics for research (IR.TUMS.FNM.REC.1401.126) and the code of Iranian Registry of Clinical Trials (IRCT) (IRCT20221202056687N1). Study results are expected to be available by mid-2024. Conclusion: This trial will provide new practical knowledge on the bone-loading exercises and PEMFS(s)'s effect on PMOP women. This knowledge is of the essence for physiotherapists, clinicians, other healthcare professionals, and policymakers in the healthcare system.

9.
Arch Pharm Res ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073743

RESUMO

Adiponectin, an adipokine, regulates metabolic processes, including glucose flux, lipid breakdown, and insulin response, by activating adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2). We have previously shown that globular adiponectin (gAd), an endogenous form of adiponectin, has osteoanabolic and anti-catabolic effects in rodent models of postmenopausal osteopenia. Moreover, we reported the identification of a 13-mer peptide (ADP-1) from the collagen domain of adiponectin, which exhibited significant adiponectin-mimetic properties. Since the clinical development of gAd is constrained by its large size, here, we investigated the osteogenic property of ADP-1. ADP-1 induced osteoblast differentiation more potently than gAd. ADP-1 elicited osteoblast differentiation through two downstream pathways that involved the participation of adiponectin receptors. Firstly, it enhanced mitochondrial biogenesis and OxPhos, leading to osteoblast differentiation. Secondly, it activated the Akt-glycogen synthase kinase 3ß-Wnt pathway, thereby increasing osteoblast differentiation. Additionally, ADP-1 suppressed the production of receptor-activator of nuclear kappa B ligand from osteoblasts, enabling it to act as a dual-action molecule (suppressing osteoclast function besides promoting osteoblast function). In osteopenic ovariectomized rats, ADP-1 increased bone mass and strength and improved trabecular integrity by stimulating bone formation and inhibiting bone resorption. Furthermore, by increasing ATP-producing intermediates within the tricarboxylic acid cycle in bones, ADP-1 likely fueled osteoblast function. Given its dual-action mechanism and high potency, ADP-1 offers a unique opportunity to address the unmet clinical need to reset the aberrant bone remodeling in osteoporosis to normalcy, potentially offering a disease-modifying impact.

10.
J Bone Miner Metab ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009890

RESUMO

In the management of osteoporosis, anti-resorptive agents serve as a primary therapeutic approach. However, in cases where individuals exhibit an increased susceptibility to fractures, such as those characterized by severe low bone mass or a history of vertebral or hip fractures that markedly diminish life expectancy, the immediate reduction of fracture risk through the administration of osteoanabolic agents could be beneficial. Teriparatide, available in daily, once-weekly, or twice-weekly dosages, along with abaloparatide and romosozumab, constitutes a trio of such agents. Each of these medications is defined by unique characteristics, distinct efficacy profiles, and specific adverse effects. There is growing evidence to suggest that these agents have a superior effect on enhancing bone mineral density and reducing fracture incidence when compared to traditional bisphosphonate therapies. Nonetheless, their employment demands thorough consideration of clinical indications, which includes evaluating economic factors, the frequency of injections required, and the potential for adverse effects. The objective of this review is to consolidate the current evidence focusing primarily on the efficacy of these agents, with the goal of enhancing understanding and aiding in making more informed treatment decisions, particularly for those individuals who are at an elevated risk of fractures.

11.
Clin Interv Aging ; 19: 1259-1272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011312

RESUMO

Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.


Assuntos
Tecido Adiposo , Medula Óssea , Osteoporose Pós-Menopausa , Humanos , Tecido Adiposo/metabolismo , Feminino , Densidade Óssea , Adipocinas/metabolismo , Estrogênios/metabolismo , Osso e Ossos/metabolismo , Animais , Citocinas/metabolismo , Homeostase
12.
Theranostics ; 14(10): 3945-3962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994035

RESUMO

Rationale: NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. Methods: We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR. Lastly, we accessed the effect of decreased NLRP3 levels on ovariectomized (OVX) rats. To specifically deliver NLRP3 siRNA to osteoblasts, we constructed NLRP3 siRNA wrapping osteoblast-specific aptamer (CH6)-functionalized lipid nanoparticles (termed as CH6-LNPs-siNLRP3). Results: We found that the levels of NLRP3 inflammasome were significantly increased in patients with PMOP, and were negatively correlated with estradiol levels. NLRP3 knock-down influenced signal pathways including immune system process, interferon signal pathway. Notably, of the top ten up-regulated genes in NLRP3-reduced osteoblasts, nine genes (except Mx2) were enriched in immune system process, and five genes were related to interferon signal pathway. The in vitro results showed that CH6-LNPs-siNLRP3 was relatively uniform with a dimeter of 96.64 ± 16.83 nm and zeta potential of 38.37 ± 1.86 mV. CH6-LNPs-siNLRP3 did not show obvious cytotoxicity and selectively delivered siRNA to bone tissue. Moreover, CH6-LNPs-siNLRP3 stimulated osteoblast differentiation by activating ALP and enhancing osteoblast matrix mineralization. When administrated to OVX rats, CH6-LNPs-siNLRP3 promoted bone formation and bone mass, improved bone microarchitecture and mechanical properties by decreasing the levels of NLRP3, IL-1ß and IL-18 and increasing the levels of OCN and Runx2. Conclusion: NLRP3 inflammasome may be a new biomarker for PMOP diagnosis and plays a key role in the pathology of PMOP. CH6-LNPs-siNLRP3 has potential application for the treatment of PMOP.


Assuntos
Inflamassomos , Lipossomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Osteoblastos , Osteoporose Pós-Menopausa , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Feminino , Humanos , Ratos , Inflamassomos/metabolismo , Nanopartículas/química , Osteoporose Pós-Menopausa/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ratos Sprague-Dawley , RNA Interferente Pequeno/administração & dosagem , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/administração & dosagem , Modelos Animais de Doenças , Pessoa de Meia-Idade , Ovariectomia
13.
J Orthop Surg Res ; 19(1): 393, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970109

RESUMO

BACKGROUND: To aim of this study is to assess the mechanism through which Desertliving Cistanche modulates the PI3K/AKT signaling pathway in the treatment of hyperlipidemic osteoporosis in ovariectomized rats. METHODS: We randomly assigned specific-pathogen-free (SPF) rats into five groups (n = 10 per group). The normal control group received a standard diet, while the model group, atorvastatin group, diethylstilbestrol group, and treatment group were fed a high-fat diet. Four weeks later, bilateral ovariectomies were conducted, followed by drug interventions. After six weeks of treatment, relevant indicators were compared and analyzed. RESULTS: Compared to the normal control group, rats in the model group exhibited blurred trabecular morphology, disorganized osteocytes, significantly elevated levels of bone-specific alkaline phosphatase (BALP), bone Gla-protein (BGP), total cholesterol (TC), tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL). Also, the model group revealed significantly reduced levels of ultimate load, fracture load, estradiol (E2), bone mineral density (BMD), osteoprotegerin (OPG), and phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in femoral tissue. The atorvastatin group presented with higher TC and TNF-α levels compared to the normal control group. Conversely, the treatment group demonstrated enhanced trabecular morphology, denser structure, smaller bone marrow cavities, and reduced BALP, BGP, TC, TNF-α, and RANKL levels. Furthermore, the treatment group exhibited higher levels of E2, BMD, OPG, and PI3K and Akt in bone tissue compared to the model group. The treatment group also had lower TC and TNF-α levels than the atorvastatin group. Biomechanical analysis indicated that after administration of Desertliving Cistanche, the treatment group had reduced body mass, increased ultimate and fracture load of the femur, denser bone structure, smaller bone marrow cavities, and altered periosteal arrangement compared to the model group. CONCLUSION: Our study revealed that Desertliving Cistanche demonstrated significant efficacy in preventing and treating postmenopausal hyperlipidemic osteoporosis in rats.


Assuntos
Cistanche , Hiperlipidemias , Osteoporose , Ovariectomia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Ovariectomia/efeitos adversos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Hiperlipidemias/complicações , Hiperlipidemias/metabolismo , Osteoporose/etiologia , Osteoporose/metabolismo , Ratos , Ratos Sprague-Dawley , Densidade Óssea/efeitos dos fármacos , Distribuição Aleatória
15.
Arch Med Sci ; 20(3): 918-937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050179

RESUMO

Introduction: Mesenchymal stem cells can develop into osteoblasts, making them a promising cell-based osteoporosis treatment. Despite their therapeutic potential, their molecular processes are little known. Bioinformatics and experimental analysis were used to determine the molecular processes of bone marrow mesenchymal stem cell (BMSC) therapy for postmenopausal osteoporosis (PMO). Material and methods: We used weighted gene co-expression network analysis (WGCNA) to isolate core gene sets from two GEO microarray datasets (GSE7158 and GSE56815). GeneCards found PMO-related genes. GO, KEGG, Lasso regression, and ROC curve analysis refined our candidate genes. Using the GSE105145 dataset, we evaluated KLF2 expression in BMSCs and examined the link between KLF2 and PIK3CA using Pearson correlation analysis. We created a protein-protein interaction network of essential genes involved in osteoblast differentiation and validated the functional roles of KLF2 and PIK3CA in BMSC osteoblast differentiation in vitro. Results: We created 6 co-expression modules from 10 419 differentially expressed genes (DEGs). PIK3CA, the key gene in the PI3K-Akt pathway, was among 197 PMO-associated DEGs. KLF2 also induced PIK3CA transcription in PMO. BMSCs also expressed elevated KLF2. BMSC osteoblast differentiation involved the PI3K-Akt pathway. In vitro, KLF2 increased PIK3CA transcription and activated the PI3K-Akt pathway to differentiate BMSCs into osteoblasts. Conclusions: BMSCs release KLF2, which stimulates the PIK3CA-dependent PI3K-Akt pathway to treat PMO. Our findings illuminates the involvement of KLF2 and the PI3K-Akt pathway in BMSC osteoblast development, which may lead to better PMO treatments.

16.
Calcif Tissue Int ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060403

RESUMO

The gut microbiome is linked to osteoporosis. Previous clinical studies showed inconsistent results. This study aimed to characterize the gut microbiota feature and reveal its relation with diet in postmenopausal osteoporosis. Fifty-five postmenopausal women with osteoporosis (Op group) and forty-four age-matched postmenopausal women (normal bone mineral density, Con group) were included in this study. Fecal microbiota was collected and analyzed by shallow shotgun sequencing. Food frequency questionnaires were collected from both groups, and Spearman analysis was used to clarify its correlation with gut microbiota. A total of 2671 species from 29 phyla, 292 families, 152 orders, 80 classes were detected in the study. The two groups had no significant difference in the α and ß diversity (p > 0.05). At the genus level, Anaerostipes was enriched in Op group (p < 0.05). At species level, Methanobrevibacter smithii, Bifidobacterium animalis, Rhodococcus defluvii, Lactobacillus plantarum, and Carnobacterium mobile were enriched in the Op group, while Bacillus luciferensis, Acetivibrio cellulolyticus, Citrobacter amalonaticus, and Bifidobacterium breve were differentially enriched in the Con group. Food frequency questionnaire showed that postmenopausal women with osteoporosis intaked more red meat, beer, white and red wine (p < 0.05), and the Con group had more yogurt, fruit, and tea consumption. Red meat consumption had a significant negative correlation with Streptosporangiales (p < 0.01) and Actinomadura (p < 0.05). Fruits intake negatively correlated with Nocardiaceae, Rhodococcus, and Rhodococcus defluvii (p < 0.05). More yogurt intake was consistently correlated with a greater abundance of Streptosporangiales. This study suggests that gut microbiota is significantly altered in the postmenopausal osteoporosis population at genus and species levels, and specific dietary intake might relate to these changes.

18.
Expert Opin Pharmacother ; 25(10): 1359-1372, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039930

RESUMO

INTRODUCTION: Osteoporosis is a chronic systemic skeletal disorder characterized by compromised bone strength and an increased risk of fracture, with a high prevalence worldwide. It is associated with a negative quality of life and an increased morbidity and mortality. Postmenopausal women are more prone to develop osteoporosis, and many of them will suffer at least one fragility fracture along their lifetime. AREAS COVERED: This review starts by summarizing the pathogenesis of postmenopausal osteoporosis (PMO), with focus on the estrogen deficiency-associated bone loss. It continues with the current PMO diagnostic and fracture risk prediction tools, and it finally addresses management of PMO. All the efficacy and safety profiles of the current and future osteoporosis medications are reviewed. Furthermore, strategies to optimize the long-term disease management are discussed. For this review, only publications in English language were selected. References were extracted from PubMed, Embase, and Medline. EXPERT OPINION: PMO disease management is far from being ideal. Educational and communication programs with the goal of improving disease knowledge and awareness, as well as reducing the health-care gap, should be implemented. In addition, most effective sequential prevention and treatment strategies should be initiated from the early menopause.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Fraturas por Osteoporose , Qualidade de Vida , Humanos , Feminino , Osteoporose Pós-Menopausa/tratamento farmacológico , Conservadores da Densidade Óssea/uso terapêutico , Fraturas por Osteoporose/prevenção & controle , Estrogênios/uso terapêutico
19.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891810

RESUMO

Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients' response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = -2.21% ± 2.56; p = 0.026) and TH (CC = -2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis.


Assuntos
Alendronato , Conservadores da Densidade Óssea , Densidade Óssea , Geraniltranstransferase , Osteoporose , Polimorfismo de Nucleotídeo Único , Falha de Tratamento , Humanos , Alendronato/uso terapêutico , Alendronato/farmacologia , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Feminino , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Masculino , Osteoporose/tratamento farmacológico , Osteoporose/genética , Idoso , Pessoa de Meia-Idade , Conservadores da Densidade Óssea/uso terapêutico , Genótipo , Alelos , Estudos de Casos e Controles
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167320, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38936515

RESUMO

Postmenopausal women experience bone loss and weight gain. To date, crosstalk between estrogen receptor signals and nuclear factor-κB (NF-κB) has been reported, and estrogen depletion enhances bone resorption by osteoclasts via NF-κB activation. However, it is unclear when and in which tissues NF-κB is activated after menopause, and how NF-κB acts as a common signaling molecule for postmenopausal weight gain and bone loss. Therefore, we examined the role of NF-κB in bone and energy metabolism following menopause. NF-κB reporter mice, which can be used to measure NF-κB activation in vivo, were ovariectomized (OVX) and the luminescence intensity after OVX increased in the metaphyses of the long bones and perigonadal white adipose tissue, but not in the other tissues. OVX was performed on wild-type (WT) and p65 mutant knock-in (S534A) mice, whose mutation enhances the transcriptional activity of NF-κB. Weight gain with worsening glucose tolerance was significant in S534A mice after OVX compared with those of WT mice. The bone density of the sham group in WT or S534A mice did not change, whereas in the S534A-OVX group it significantly decreased due to the suppression of bone formation and increase in bone marrow adipocytes. Disulfiram, an anti-alcoholic drug, suppressed OVX-induced activation of NF-κB in the metaphyses of long bones and white adipose tissue (WAT), as well as weight gain and bone loss. Overall, the activation of NF-κB in the metaphyses of long bones and WAT after OVX regulates post-OVX weight gain and bone loss.


Assuntos
Reabsorção Óssea , NF-kappa B , Ovariectomia , Transdução de Sinais , Aumento de Peso , Animais , Ovariectomia/efeitos adversos , Feminino , Camundongos , NF-kappa B/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Humanos , Densidade Óssea , Camundongos Endogâmicos C57BL , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA