Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542340

RESUMO

Auxin plays a crucial role in regulating root growth and development, and its distribution pattern under environmental stimuli significantly influences root plasticity. Under K deficiency, the interaction between K+ transporters and auxin can modulate root development. This study compared the differences in root morphology and physiological mechanisms of the low-K-tolerant maize inbred line 90-21-3 and K-sensitive maize inbred line D937 under K-deficiency (K+ = 0.2 mM) with exogenous NAA (1-naphthaleneacetic acid, NAA = 0.01 mM) treatment. Root systems of 90-21-3 exhibited higher K+ absorption efficiency. Conversely, D937 seedling roots demonstrated greater plasticity and higher K+ content. In-depth analysis through transcriptomics and metabolomics revealed that 90-21-3 and D937 seedling roots showed differential responses to exogenous NAA under K-deficiency. In 90-21-3, upregulation of the expression of K+ absorption and transport-related proteins (proton-exporting ATPase and potassium transporter) and the enrichment of antioxidant-related functional genes were observed. In D937, exogenous NAA promoted the responses of genes related to intercellular ethylene and cation transport to K-deficiency. Differential metabolite enrichment analysis primarily revealed significant enrichment in flavonoid biosynthesis, tryptophan metabolism, and hormone signaling pathways. Integrated transcriptomic and metabolomic analyses revealed that phenylpropanoid biosynthesis is a crucial pathway, with core genes (related to peroxidase enzyme) and core metabolites upregulated in 90-21-3. The findings suggest that under K-deficiency, exogenous NAA induces substantial changes in maize roots, with the phenylpropanoid biosynthesis pathway playing a crucial role in the maize root's response to exogenous NAA regulation under K-deficiency.


Assuntos
Deficiência de Potássio , Plântula , Plântula/genética , Plântula/metabolismo , Zea mays/metabolismo , Deficiência de Potássio/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Cell Rep ; 42(8): 112934, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37537840

RESUMO

Extracellular potassium [K+]o elevation during synaptic activity retrogradely modifies presynaptic release and astrocytic uptake of glutamate. Hence, local K+ clearance and replenishment mechanisms are crucial regulators of glutamatergic transmission and plasticity. Based on recordings of astrocytic inward rectifier potassium current IKir and K+-sensitive electrodes as sensors of [K+]o as well as on in silico modeling, we demonstrate that the neuronal K+-Cl- co-transporter KCC2 clears local perisynaptic [K+]o during synaptic excitation by operating in an activity-dependent reversed mode. In reverse mode, KCC2 replenishes K+ in dendritic spines and complements clearance of [K+]o, therewith attenuating presynaptic glutamate release and shortening LTP. We thus demonstrate a physiological role of KCC2 in neuron-glial interactions and regulation of synaptic signaling and plasticity through the uptake of postsynaptically released K+.


Assuntos
Potássio , Simportadores , Animais , Glutamatos , Potássio/metabolismo , Sinapses/metabolismo , Cotransportadores de K e Cl-
3.
Sci Total Environ ; 900: 166344, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37597543

RESUMO

Straw biochar amended soils reduce fertilizer losses and alleviate soil K-exhaustion, while decrease grain yield due to its high pH. H2SO4-modified biochar has been studied as a means to enhance the advantages of biochar and address yield decrease. However, little information is available on its effects on aboveground K uptake, soil K fixation, K leaching, and utilization in paddy rice systems, especially under water stress. A 3-year field experiment was conducted with two irrigation regimes (continuously flooded irrigation, ICF and alternate wetting and drying irrigation, IAWD) as main plots and 0 (control), 20 t ha-1 biochar (B20), and 20 t ha-1 acid-modified biochar (B20A-M) as subplots. The results showed that IAWD significantly decreased water percolation by 9.26 %-14.74 % but increased K leaching by 10.84 %-15.66 %. Compared to B0, B20 and B20A-M significantly increased K leaching by 32.40 % and 30.42 % in 2019, while decreased it by 11.60 %-14.01 % in 2020 and 2021. Both B20 and B20A-M significantly improved aboveground K uptake by 3.45 %-6.71 % throughout the three years. B20 reduced grain yield in 2019 and increased it in 2020 and 2021, while B20A-M increased grain yield throughout the three years. Apparent K balance (AKB) from pre-transplanting to post-harvest over the three years suggested that IAWD significantly increased the risk of soil K depletion but B20 and B20A-M significantly increased AKB, thereby addressing the depletion of it. IAWDB20A-M have a comparable AKB with ICFB20A-M, but had up to 18.3 % and 21.61 % higher AKB than IAWDB20 and ICFB20. Therefore, the use of H2SO4 modified biochar could produce higher grain yield with lower K leaching for addition in IAWD paddy systems, which is beneficial to mitigate soil K depletion and ensure a sustainable agricultural production.


Assuntos
Ecossistema , Grão Comestível , Transporte Biológico , Solo , Potássio
4.
Elife ; 112022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255052

RESUMO

KdpFABC is a high-affinity prokaryotic K+ uptake system that forms a functional chimera between a channel-like subunit (KdpA) and a P-type ATPase (KdpB). At high K+ levels, KdpFABC needs to be inhibited to prevent excessive K+ accumulation to the point of toxicity. This is achieved by a phosphorylation of the serine residue in the TGES162 motif in the A domain of the pump subunit KdpB (KdpBS162-P). Here, we explore the structural basis of inhibition by KdpBS162 phosphorylation by determining the conformational landscape of KdpFABC under inhibiting and non-inhibiting conditions. Under turnover conditions, we identified a new inhibited KdpFABC state that we termed E1P tight, which is not part of the canonical Post-Albers transport cycle of P-type ATPases. It likely represents the biochemically described stalled E1P state adopted by KdpFABC upon KdpBS162 phosphorylation. The E1P tight state exhibits a compact fold of the three cytoplasmic domains and is likely adopted when the transition from high-energy E1P states to E2P states is unsuccessful. This study represents a structural characterization of a biologically relevant off-cycle state in the P-type ATPase family and supports the emerging discussion of P-type ATPase regulation by such states.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , ATPases do Tipo-P , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Cátions/química , Potássio/metabolismo
5.
J Fungi (Basel) ; 8(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628688

RESUMO

Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, which reflect the availability of potassium in the environment. However, when and how the affinity changes, and whether the potassium availability is the only signal for the affinity switch, remains unknown. Here, we characterize the Trk1 kinetic parameters under various conditions and find that Trk1's KT and Vmax change gradually. This gliding adjustment is rapid and precisely reflects the changes in the intracellular potassium content and membrane potential. A detailed characterization of the specific mutations in the P-helices of the MPM segments reveals that the presence of proline in the P-helix of the second and third MPM domain (F820P and L949P) does not affect the function of Trk1 in general, but rather specifically prevents the transporter's transition to a high-affinity state. The analogous mutations in the two remaining MPM domains (L81P and L1115P) result in a mislocalized and inactive protein, highlighting the importance of the first and fourth P-helices in proper Trk1 folding and activity at the plasma membrane.

6.
Microbiology (Reading) ; 167(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170815

RESUMO

The existence of programmed cell death in Saccharomyces cerevisiae has been reported for many years. Glucose induces the death of S. cerevisiae in the absence of additional nutrients within a few hours, and the absence of active potassium uptake makes cells highly sensitive to this process. S. cerevisiae cells possess two transporters, Trk1 and Trk2, which ensure a high intracellular concentration of potassium, necessary for many physiological processes. Trk1 is the major system responsible for potassium acquisition in growing and dividing cells. The contribution of Trk2 to potassium uptake in growing cells is almost negligible, but Trk2 becomes crucial for stationary cells for their survival of some stresses, e.g. anhydrobiosis. As a new finding, we show that both Trk systems contribute to the relative thermotolerance of S. cerevisiae BY4741. Our results also demonstrate that Trk2 is much more important for the cell survival of glucose-induced cell death than Trk1, and that stationary cells deficient in active potassium uptake lose their ATP stocks more rapidly than cells with functional Trk systems. This is probably due to the upregulated activity of plasma-membrane Pma1 H+-ATPase, and consequently, it is the reason why these cells die earlier than cells with functional active potassium uptake.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/genética , Morte Celular , Viabilidade Microbiana , Potássio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
7.
Genomics ; 113(2): 755-768, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516850

RESUMO

Breeding crops that acquire and/or utilize potassium (K) more effectively could reduce the use of K fertilizers. Sixteen traits affecting K use efficiency (KUE) at the seedling stage were investigated in a B. napus double haploid population grown at an optimal K supply (OK) and a low K supply (LK) in a hydroponic culture system. In total, 50 and 62 QTLs associated with these traits were identified at OK and LK, respectively. A total of 25 orthologues of 23 Arabidopsis genes regulating K transport were identified in the confidence intervals of nine QTLs impacting shoot dry weight at LK, and 22 of these showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in roots at LK between the two parental lines. This study provided insights to the genetic basis of KUE in B. napus, which will accelerate the breeding of K-efficient rapeseed cultivars by marker-assisted selection.


Assuntos
Brassica napus/genética , Polimorfismo de Nucleotídeo Único , Potássio/metabolismo , Locos de Características Quantitativas , Brassica napus/metabolismo , Mutação INDEL , Transporte de Íons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Bioact Mater ; 6(2): 543-558, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32995679

RESUMO

Patients with chronic kidney disease are at high risk of hyperkalemia that is associated with various life-threatening complications. Treatments primarily rely on orally administered potassium binding agents, along with low curative effects and various side effects. Herein, direct serum potassium uptake was realized via zeolite-heparin-mimicking-polymer hybrid microbeads. The preparation process involved the synthesis of the heparin-mimicking polymer via the in situ cross-linking polymerization of acrylic acid and N-vinylpyrrolidone in polyethersulfone solution, the fabrication of microbeads via zeolite-mixing, electro-spraying and phase-inversion, and the subsequent aqueous-phase modifications based on ion-exchange and metal-leaching. An ultra-high (about 88%) amount of zeolite could be incorporated and well locked inside the polymer matrix. Potassium uptake capability was verified in water, normal saline and human serum, showing high selectivity and fast adsorption. The microbeads exhibited satisfying blood compatibility, negligible hemolysis ratio, prolonged clotting time, inhibited contact activation, and enhanced antifouling property toward serum proteins and cells. The proposed approach toward zeolite-heparin-mimicking-polymer hybrid microbeads provided a cheap, efficient and safe treatment protocol of hyperkalemia for the high-risk patients.

9.
Plant Physiol Biochem ; 155: 357-366, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32798904

RESUMO

Potassium (K) is an essential inorganic nutrient needed by plants for their growth and development. The conserved target of rapamycin (TOR) kinase, a well-known nutrition signaling integrator, has crucial roles in regulating growth and development in all eukaryotes. Emerging evidence suggests that TOR is a core regulator of nutrient absorption and utilization in plants. However, it is still unclear whether there is a causative link between the TOR pathway and potassium absorption. Here, we show that the expression of some potassium transporters and channels was regulated by TOR, and the suppression of TOR activity significantly affected potassium uptake in Arabidopsis and potato. Furthermore, we discovered that a Type 2A phosphatase-associated protein of 46 kDa (TAP46), a direct TOR downstream effector, could interact with CBL-interacting protein kinase 23 (CIPK23) in Arabidopsis and potato. In Arabidopsis, the K+ channel AKT1 conducting K+ uptake was significantly regulated by Calcineurin B-like Calcium Sensor Protein 1/9 (CBL1/9)-CIPK23 modules. We found that the cbl1cbl9, cipk23 (lks1-2 and lks1-3), and akt1 mutants were more hyposensitive to the TOR inhibitor than the wild-type, and the TOR inhibitor induced the downregulation of K+ uptake rate in the wild-type more than in these mutants. In addition, the overexpression of CIPK23 could effectively restore the defects in growth and potassium uptake induced by the TOR inhibitors. Thus, our work reveals a link between TOR signaling and CIPK23 and provides new insight into the regulation of potassium uptake in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Fosfatidilinositol 3-Quinases/metabolismo , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Solanum tuberosum , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio , Canais de Potássio , Transdução de Sinais , Solanum tuberosum/metabolismo
10.
Brain Sci ; 10(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019062

RESUMO

Epilepsy, characterized by recurrent seizures, affects 1% of the general population. Interestingly, 25% of diabetics develop seizures with a yet unknown mechanism. Hyperglycemia downregulates inwardly rectifying potassium channel 4.1 (Kir4.1) in cultured astrocytes. Therefore, the present study aims to determine if downregulation of functional astrocytic Kir4.1 channels occurs in brains of type 2 diabetic mice and could influence hippocampal neuronal hyperexcitability. Using whole-cell patch clamp recording in hippocampal brain slices from male mice, we determined the electrophysiological properties of stratum radiatum astrocytes and CA1 pyramidal neurons. In diabetic mice, astrocytic Kir4.1 channels were functionally downregulated as evidenced by multiple characteristics including depolarized membrane potential, reduced barium-sensitive Kir currents and impaired potassium uptake capabilities of hippocampal astrocytes. Furthermore, CA1 pyramidal neurons from diabetic mice displayed increased spontaneous activity: action potential frequency was ≈9 times higher in diabetic compared with non-diabetic mice and small EPSC event frequency was significantly higher in CA1 pyramidal cells of diabetics compared to non-diabetics. These differences were apparent in control conditions and largely pronounced in response to the pro-convulsant 4-aminopyridine. Our data suggest that astrocytic dysfunction due to downregulation of Kir4.1 channels may increase seizure susceptibility by impairing astrocytic ability to maintain proper extracellular homeostasis.

11.
J Nanobiotechnology ; 18(1): 21, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992314

RESUMO

BACKGROUND: Carbon nanoparticles (CNPs) have been reported to boost plant growth, while the mechanism that CNPs enhanced potassium uptake for plant growth has not been reported so far. RESULTS: In this study, the function that CNPs promoted potassium uptake in BY-2 cells was established and the potassium accumulated in cells had a significant correlation with the fresh biomass of BY-2 cells. The K+ accumulation in cells increased with the increasing concentration of CNPs. The K+ influx reached high level after treatment with CNPs and was significantly higher than that of the control group and the negative group treated with K+ channels blocker, tetraethylammonium chloride (TEA+). The K+ accumulation was not reduced in the presence of CNPs inhibitors. In the presence of potassium channel blocker TEA+ or CNPs inhibitors, the NKT1 gene expression was changed compared with the control group. The CNPs were found to preferentially transport K+ than other cations determined by rectification of ion current assay (RIC) in a conical nanocapillary. CONCLUSIONS: These results indicated that CNPs upregulated potassium gene expression to enhance K+ accumulation in BY-2 cells. Moreover, it was speculated that the CNPs simulated protein of ion channels via bulk of carboxyl for K+ permeating. These findings will provide support for improving plant growth by carbon nanoparticles.


Assuntos
Carbono/química , Nanopartículas/química , Nanopartículas/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Potássio/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Permeabilidade da Membrana Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Melhoramento Genético , Humanos , Potenciais da Membrana , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Tetraetilamônio/química , Tetraetilamônio/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
J Exp Bot ; 70(20): 5879-5893, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31290978

RESUMO

Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-) and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1), and potassium transporter (HAK5) showed higher expression in pumpkin than in cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression, reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-mediated transcriptional and post-translational activation of plasma membrane H+-ATPase operating upstream of HAK5 K+ uptake transporters.


Assuntos
Membrana Celular/metabolismo , Cucurbitaceae/metabolismo , Potássio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Cucurbita/efeitos dos fármacos , Cucurbita/metabolismo , Cucurbitaceae/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Oniocompostos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
13.
Biotechnol Biofuels ; 12: 97, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044010

RESUMO

BACKGROUND: Propionic acid (PA), a key platform chemical produced as a by-product during petroleum refining, has been widely used as a food preservative and an important chemical intermediate in many industries. Microbial PA production through engineering yeast as a cell factory is a potentially sustainable alternative to replace petroleum refining. However, PA inhibits yeast growth at concentrations well below the titers typically required for a commercial bioprocess. RESULTS: Adaptive laboratory evolution (ALE) with PA concentrations ranging from 15 to 45 mM enabled the isolation of yeast strains with more than threefold improved tolerance to PA. Through whole genome sequencing and CRISPR-Cas9-mediated reverse engineering, unique mutations in TRK1, which encodes a high-affinity potassium transporter, were revealed as the cause of increased propionic acid tolerance. Potassium supplementation growth assays showed that mutated TRK1 alleles and extracellular potassium supplementation not only conferred tolerance to PA stress but also to multiple organic acids. CONCLUSION: Our study has demonstrated the use of ALE as a powerful tool to improve yeast tolerance to PA. Potassium transport and maintenance is not only critical in yeast tolerance to PA but also boosts tolerance to multiple organic acids. These results demonstrate high-affinity potassium transport as a new principle for improving organic acid tolerance in strain engineering.

14.
Yeast ; 36(7): 439-448, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31035304

RESUMO

Candida krusei is a pathogenic yeast species that is phylogenetically outside both of the well-studied yeast groups, whole genome duplication and CUG. Like all other yeast species, it needs to accumulate high amounts of potassium cations, which are needed for proliferation and many other cell functions. A search in the sequenced genomes of nine C. krusei strains revealed the existence of two highly conserved genes encoding putative potassium uptake systems. Both of them belong to the TRK family, whose members have been found in all the sequenced genomes of species from the Saccharomycetales subclade. Analysis and comparison of the two C. krusei Trk sequences revealed all the typical features of yeast Trk proteins but also an unusual extension of the CkTrk2 hydrophilic N-terminus. The expression of both putative CkTRK genes in Saccharomyces cerevisiae lacking its own potassium importers showed that only CkTrk1 is able to complement the absence of S. cerevisiae's own transporters and provide cells with a sufficient amount of potassium. Interestingly, a portion of the CkTrk1 molecules were localized to the vacuolar membrane. The presence of CkTrk2 had no evident phenotype, due to the fact that this protein was not correctly targeted to the S. cerevisiae plasma membrane. Thus, CkTrk2 is the first studied yeast Trk protein to date that was not properly recognized and targeted to the plasma membrane upon heterologous expression in S. cerevisiae.


Assuntos
Candida/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/metabolismo , Potássio/metabolismo , Candida/classificação , Candida/genética , Candida/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Proteínas Fúngicas/genética , Teste de Complementação Genética , Variação Genética , Genoma Fúngico/genética , Transporte de Íons , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/classificação , Saccharomycetales/genética
15.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858295

RESUMO

Cyclic di-AMP (c-di-AMP) is a second messenger which plays a major role in osmotic homeostasis in bacteria. In work by Quintana et al. (I. M. Quintana, J. Gibhardt, A. Turdiev, E. Hammer, et al., J Bacteriol 201:e00028-19, 2019, https://doi.org/10.1128/jb.00028-19), two Kup homologs from Lactococcus lactis were identified as high-affinity K+ importers whose activities are inhibited by direct binding of c-di-AMP. The results broaden the scope of K+ level regulation by c-di-AMP, with Kup homologs found in a number of pathogenic, commensal, and industrial bacteria.


Assuntos
Lactococcus lactis , Monofosfato de Adenosina , Proteínas de Bactérias , AMP Cíclico , Proteína Receptora de AMP Cíclico , Fosfatos de Dinucleosídeos , Potássio
16.
Infect Genet Evol ; 71: 51-53, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30898642

RESUMO

The arginine catabolic mobile element (ACME) was first described in methicillin-resistant Staphylococcus aureus and is considered to enhance transmission, persistence and survival. Subsequently ACMEs were shown to be more prevalent in the coagulase-negative Staphylococcus epidermidis. Previously, ACME types were distinguished by characteristic combinations of the arc and opp3 operons [I (arc+, opp3+), II (arc+, opp3-) and III (arc-, opp3+)] encoding an arginine deaminase pathway and oligopeptide permease transporter, respectively. Recently two novel ACME types harboring the potassium transporter-encoding operon kdp were described in oral S. epidermidis isolates [IV (arc+, opp3-, kdp+), and V (arc+, opp3+, kdp+)]. This study investigated two independent oral S. epidermidis isolates that yielded amplimers with kdp-directed primers only when subjected to ACME typing PCRs. Hybrid assemblies based on Illumina MiSeq short-read and Oxford Nanopore MinION long-read whole genome sequences revealed that both isolates harbored a sixth, novel ACME type (VI) integrated into orfX. Both ACME VIs lacked the arc and opp3 operons, harbored the kdp operon adjacent to other commonly ACME-associated genes including speG, hsd, sdr, and rep, but the structural organization of the adjacent regions were distinct. These ACMEs were flanked by different direct repeat sequences and the ACME VI-positive isolates belonged to unrelated genetic clusters. Overall these findings are indicative of independent evolution. The identification of ACME type VI further illustrates the diversity of ACME elements in S. epidermidis. The presence of ACMEs harboring kdp may confer a selective advantage on oral S. epidermidis in a potassium-rich environment such as found in dental plaque.


Assuntos
Arginina/genética , Elementos de DNA Transponíveis/genética , Staphylococcus epidermidis/genética , Adenosina Trifosfatases/genética , Arginina/metabolismo , Proteínas de Transporte de Cátions/genética , Variação Genética , Ilhas Genômicas , Humanos , Óperon/genética , Infecções Estafilocócicas/microbiologia , Sequenciamento Completo do Genoma
17.
Neuroscience ; 384: 54-63, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800717

RESUMO

A-kinase-anchoring proteins, AKAPs, are scaffolding proteins that associate with kinases and phosphatases, and direct them to a specific submembrane site to coordinate signaling events. AKAP150, a rodent ortholog of human AKAP79, has been extensively studied in neurons, but very little is known about the localization and function of AKAP150 in astrocytes, the major cell type in brain. Thus, in this study, we assessed the localization of AKAP150 in astrocytes and elucidated its role during physiological and ischemic conditions. Herein, we demonstrate that AKAP150 is localized in astrocytes and is up-regulated during ischemia both in vitro and in vivo. Knock-down of AKAP150 by RNAi depolarizes the astrocytic membrane potential and substantially reduces by 80% the ability of astrocytes to take up extracellular potassium during ischemic conditions. Therefore, upregulation of AKAP150 during ischemia preserves potassium conductance and the associated hyperpolarized membrane potential of astrocytes; properties of astrocytes needed to maintain extracellular brain homeostasis. Taken together, these data suggest that AKAP150 may play a pivotal role in the neuroprotective mechanism of astrocytes during pathological conditions.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Regulação para Cima , Animais , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
18.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610213

RESUMO

Cyclic di-AMP (c-di-AMP) is an important second messenger in bacteria. In most Firmicutes, the molecule is required for growth in complex media but also toxic upon accumulation. In an article on their current study, Zarrella and coworkers present a suppressor analysis of a Streptococcus pneumoniae strain that is unable to degrade c-di-AMP (T. M. Zarrella, D. W. Metzger, and G. Bai, J Bacteriol 200:e00045-18, 2018, https://doi.org/10.1128/JB.00045-18). Their study identifies new links between c-di-AMP and potassium homeostasis and supports the hypothesis that c-di-AMP serves as a second messenger to report about the intracellular potassium concentrations.


Assuntos
AMP Cíclico/metabolismo , Bactérias Gram-Positivas/metabolismo , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/genética , Homeostase , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro
19.
Neuroscience ; 374: 70-79, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355592

RESUMO

Chronic mountain sickness (CMS) or Monge's disease is a disease in highlanders. These patients have a variety of neurologic symptoms such as migraine, mental fatigue, confusion, dizziness, loss of appetite, memory loss and neuronal degeneration. The cellular and molecular mechanisms underlying CMS neuropathology is not understood. In the previous study, we demonstrated that neurons derived from CMS patients' fibroblasts have a decreased expression and altered gating properties of voltage-gated sodium channel. In this study, we further characterize the electrophysiological properties of iPSC-derived astrocytes from CMS patients. We found that the current densities of the inwardly rectifying potassium (Kir) channels in CMS astrocytes (-5.7 ±â€¯2.2 pA/pF at -140 mV) were significantly decreased as compared to non-CMS (-28.4 ±â€¯3.4 pA/pF at -140 mV) and sea level subjects (-28.3 ±â€¯5.3 pA/pF at -140 mV). We further demonstrated that the reduced Kir current densities in CMS astrocytes were caused by their decreased protein expression of Kir4.1 and Kir2.3 channels, while single channel properties (i.e., Po, conductance) of Kir channel in CMS astrocytes were not altered. In addition, we found no significant differences of outward potassium currents between CMS and non-CMS astrocytes. As compared to non-CMS and sea level subjects, the K+ uptake ability in CMS astrocytes was significantly decreased. Taken together, our results suggest that down-regulation of Kir channels and the resulting decreased K+ uptake ability in astrocytes could be one of the major molecular mechanisms underlying the neurologic manifestations in CMS patients.


Assuntos
Doença da Altitude/metabolismo , Astrócitos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Western Blotting , Cátions Monovalentes/metabolismo , Células Cultivadas , Doença Crônica , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Potássio/metabolismo
20.
Front Microbiol ; 8: 1328, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28751888

RESUMO

Bacteria often use cyclic dinucleotides as second messengers for signal transduction. While the classical molecule c-di-GMP is involved in lifestyle selection, the functions of the more recently discovered signaling nucleotide cyclic di-AMP are less defined. For many Gram-positive bacteria, c-di-AMP is essential for growth suggesting its involvement in a key cellular function. We have analyzed c-di-AMP signaling in the genome-reduced pathogenic bacterium Mycoplasma pneumoniae. Our results demonstrate that these bacteria produce c-di-AMP, and we could identify the diadenylate cyclase CdaM (MPN244). This enzyme is the founding member of a novel family of diadenylate cyclases. Of two potential c-di-AMP degrading phosphodiesterases, only PdeM (MPN549) is active in c-di-AMP degradation, whereas NrnA (MPN140) was reported to degrade short oligoribonucleotides. As observed in other bacteria, both the c-di-AMP synthesizing and the degrading enzymes are essential for M. pneumoniae suggesting control of a major homeostatic process. To obtain more insights into the nature of this process, we have identified a c-di-AMP-binding protein from M. pneumoniae, KtrC. KtrC is the cytoplasmic regulatory subunit of the low affinity potassium transporter KtrCD. It is established that binding of c-di-AMP inhibits the KtrCD activity resulting in a limitation of potassium uptake. Our results suggest that the control of potassium homeostasis is the essential function of c-di-AMP in M. pneumoniae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA