Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Food Chem ; 455: 139877, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824726

RESUMO

High-intensity ultrasonication is an emerging technology for plant protein isolation and modification. In this study, the potential of temperature-controlled ultrasonication to enhance the recovery of functional proteins from potato trimmings was assessed. Different ultrasound energy levels [2000-40,000 J/g fresh weight (FW)] were applied during protein extraction at pH 9.0. True protein yields after ultrasonication significantly increased (up to 91%) compared to conventional extraction (33%). Microstructural analysis of the extraction residues showed more disrupted cells as ultrasonication time increased. Ultrasound treatments (10,000 and 20,000 J/g FW) increased the protein yield without affecting the foaming and air-water interfacial properties of protein isolates obtained after isoelectric precipitation (pH 4.0). However, proteins obtained after extended ultrasonication (40,000 J/g FW) had significantly slower early-stage adsorption kinetics. This was attributed to ultrasound-induced aggregation of the protease inhibitor fraction. In conclusion, ultrasonication shows potential to help overcome some challenges associated with plant protein extraction.


Assuntos
Proteínas de Plantas , Solanum tuberosum , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Solanum tuberosum/química , Sonicação , Cinética , Ultrassom , Concentração de Íons de Hidrogênio
2.
Int J Biol Macromol ; 270(Pt 1): 132069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705333

RESUMO

When creating plant-based meat analogs, it is often challenging to mimic the structural and textural attributes of real meat products during the cooking process. In this study, we investigated the potential of using potato protein/calcium alginate composite gels to formulate plant-based meat analogs. These gels provide a semi-solid texture at ambient temperature that remains intact during cooking because the electrostatic crosslinks are resistant to heat. Composite gels consisting of potato protein (10 wt%) and alginate (0-2 wt%) were prepared using the internal gelation method. This method involves dispersing an insoluble form of calcium (CaHPO4) throughout the protein-polysaccharide matrix and then using glucono-delta-lactone (GDL) to slowly lower the pH, thereby releasing the Ca2+ ions evenly throughout the system. The calcium alginate increased the strength of the potato protein gels and provided structural resistance to heat. Appreciable water loss occurred during cooking for simple calcium alginate gels, but this was prevented when potato proteins were present. Increasing the alginate concentration from 0 to 1.5 % increased the strength of the composite gels but higher levels promoted phase separation and network disruption, which reduced the gel strength. Heating did not appreciably alter the microstructure of the composite gels, but it did alter that of the pure potato protein gels. Finally, the potential of the composite gels as plant-based meat analogs was assessed by comparing their thermal denaturation and textural properties to those of real chicken breast. The potato protein/alginate composites were shown to simulate the thermal denaturation and textural changes of real chicken during the cooking process. Overall, our results suggest that calcium alginate gels may be useful in the formulation of plant-based meat products with improved cooking properties.


Assuntos
Alginatos , Cálcio , Géis , Proteínas de Plantas , Solanum tuberosum , Alginatos/química , Solanum tuberosum/química , Géis/química , Proteínas de Plantas/química , Cálcio/química , Carne , Concentração de Íons de Hidrogênio , Culinária , Animais , Substitutos da Carne
3.
Food Chem X ; 22: 101405, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694543

RESUMO

This study investigated the effect of inulin with different polymerization degrees (DP), including L-inulin (DP 2-6), M-inulin (DP 10-23) and H-inulin (DP 23-46), on the structural and gelation properties of potato protein isolate (PPI). Results revealed that textural properties (hardness, cohesiveness, springiness and chewiness) and water-holding capacity (WHC) of PPI-inulin composite gels were positively correlated with the inulin DP and addition content at 0-1.5% (w/v), but deteriorated at 2% due to phase separation. The addition of 1.5% H-inulin showed the most significant increment effects on the WHC (18.65%) and hardness (2.84 N) of PPI gel. Furthermore, M-/H-inulin were more effective in increasing the whiteness and surface hydrophobicity, as well as in strengthening hydrogen bonds and hydrophobic interactions than L-inulin. Fourier transform infrared spectroscopy analysis and microstructural observation indicated that inulin with higher DP promoted more generation of ß-sheet structures, and leading to the formation of stronger and finer network structures.

4.
Environ Toxicol ; 39(7): 3991-4003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38606910

RESUMO

In recent times, there has been growing attention towards exploring the nutritional and functional aspects of potato protein, along with its diverse applications. In the present study, we examined the anti-osteoclast properties of potato protein hydrolysate (PP902) in vitro. Murine macrophages (RAW264.7) were differentiated into osteoclasts by receptor activator of nuclear factor-κB ligand (RANKL), and PP902 was examined for its inhibitory effect. Initially, treatment with PP902 was found to significantly prevent RANKL-induced morphological changes in macrophage cells, as determined by tartrate-resistant acid phosphatase (TRAP) staining analysis. This notion was further supported by F-actin analysis using a confocal microscope. Furthermore, PP902 treatment effectively and dose-dependently down-regulated the expression of RANKL-induced osteoclastogenic marker genes, including TRAP, CTR, RANK, NFATc1, OC-STAMP, and c-Fos. These inhibitory effects were associated with suppressing NF-κB transcriptional activation and subsequent reduced nuclear translocation. The decrease in NF-κB activity resulted from reduced activation of its upstream kinases, including I-κBα and IKKα. Moreover, PP902 significantly inhibited RANKL-induced p38MAPK and ERK1/2 activities. Nevertheless, PP902 treatment prevents RANKL-induced intracellular reactive oxygen species generation via increased HO-1 activity. The combined antioxidant and anti-inflammatory effects of PP902 resulted in significant suppression of osteoclastogenesis, suggesting its potential as an adjuvant therapy for osteoclast-related diseases.


Assuntos
NF-kappa B , Osteoclastos , Hidrolisados de Proteína , Ligante RANK , Solanum tuberosum , Animais , Camundongos , Osteoclastos/efeitos dos fármacos , Células RAW 264.7 , NF-kappa B/metabolismo , Hidrolisados de Proteína/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Plantas/farmacologia
5.
Food Chem ; 450: 139301, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38613966

RESUMO

By-products from the potato processing industry, like potato trimmings, are sustainable sources of proteins. Here, a size-exclusion high performance liquid chromatography (SE-HPLC) method was applied to simultaneously determine the extractability and aggregation state of proteins from three batches of potato trimmings of different cultivars. Obtained SE-HPLC profiles allowed distinguishing between the patatin and protease inhibitor fractions of potato proteins. Moreover, only 75% of the crude proteins could be extracted in phosphate buffer containing sodium dodecyl sulfate and a reducing agent, indicating the presence of physical extraction barriers. Ball milling for 5 min significantly increased protein extractability, but prolonged treatment resulted in aggregation of native patatin and a reduced protein extractability. Microwave-dried trimmings had a lower protein extractability than freeze-dried trimmings. In future research, the SE-HPLC method can be used to examine changes in potato protein (fractions) as a result of processing.


Assuntos
Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Tubérculos/química , Manipulação de Alimentos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
6.
Animals (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958104

RESUMO

Glycoalkaloids (GA) are anti-nutritional factors in standard potato protein concentrate (PPC) fed to piglets. Increasing levels of standard PPC was expected to affect growth performance and fecal score negatively. Seven-hundred-and-twenty pigs (7-30 kg) were fed one of the following four diets within three feeding phases (days 0-13, 13-24, and 24-45): control (CTRL), PPC standard inclusion (PPC-S; 4%, 2%, and 0%), high PPC inclusion (PPC-H; 8%, 3.5%, and 2%), and extremely high PPC inclusion (PPC-EH; 12%, 5%, and 3.5%). During days 0-13, CTRL displayed no difference in growth performance compared with the three experimental groups (PPC-S, PPC-H, and PPC-EH). During days 13-24, PPC-H achieved greater (p < 0.001) average daily feed intake (ADFI) compared to CTRL. During days 24-45, no differences between groups were observed. For the overall experimental period (0-45 days), PPC-H displayed greater average daily gain (ADG) (p = 0.010) and ADFI (p = 0.024) compared to CTRL. The feed conversion ratio (FCR) remained unaffected between the groups for all experimental periods. Increasing levels of PPC and hence GA did not affect the probability of diarrhea. In conclusion, increased standard PPC and hence increased levels of GA in isonitrogenous diets did not negatively affect growth performance nor fecal score in piglets (7-30 kg).

7.
J Food Sci Technol ; 60(10): 2628-2638, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37599846

RESUMO

This manuscript reveals the effect of the emulsification step on the black carrot extract (BCE) stabilization by potato protein isolate (PPI)-citrus pectin (CP) coacervates. The effect of core-to-wall ratio and concentration of wall material were also investigated. This was the first attempt to compare the characteristics of emulsified core particles (ECP) and non-emulsified core particles (NECP) coated with complex coacervates. Potato protein was used as an encapsulating agent by complex coacervation for the first time, and it showed excellent characteristics for the encapsulation. Non-hygroscopic particles were produced with emulsification while most of NECPs were slightly hygroscopic. The mean particle diameter of powders ranged from 65.05 to 152.47 µm which is suitable with SEM micrographs. ECPs showed lower particle size values with increased wall concentration at the constant core-to-wall ratio. Encapsulation efficiency (EE) increased, and anthocyanin retention (AR) decreased when emulsification was included. EE of NECP and ECP was between 69.26-82.84% and 85.48-90.15% while AR was between 79.08-102.16% and 53.90-83.37%, respectively. FT-IR and ζ-potential values proved the complexation between PPI and CP in ECPs as well as the interaction of PP, CP, and BCE in NECPs. DSC thermograms proved the success of the encapsulation procedure and thermo-stability of the BCE-loaded particles. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05787-z.

8.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37298671

RESUMO

Protein-based biostimulants (PBBs) have a positive effect on plant development, although the biological background for this effect is not well understood. Here, hydrolyzed wheat gluten (HWG) and potato protein film (PF) in two levels (1 and 2 g/kg soil) and in two different soils (low and high nutrient; LNC and HNC) were used as PBBs. The effect of these PBBs on agronomic traits, sugars, protein, and peptides, as well as metabolic processes, were evaluated on sugar beet in comparison with no treatment (control) and treatment with nutrient solution (NS). The results showed a significant growth enhancement of the plants using HWG and PF across the two soils. Sucrose and total sugar content in the roots were high in NS-treated plants and correlated to root growth in HNC soil. Traits related to protein composition, including nitrogen, peptide, and RuBisCO contents, were enhanced in PBB-treated plants (mostly for HWG and PF at 2 g/kg soil) by 100% and >250% in HNC and LNC, respectively, compared to control. The transcriptomic analysis revealed that genes associated with ribosomes and photosynthesis were upregulated in the leaf samples of plants treated with either HWG or PP compared to the control. Furthermore, genes associated with the biosynthesis of secondary metabolites were largely down-regulated in root samples of HWG or PF-treated plants. Thus, the PBBs enhanced protein-related traits in the plants through a higher transcription rate of genes related to protein- and photosynthesis, which resulted in increased plant growth, especially when added in certain amounts (2 g/kg soil). However, sucrose accumulation in the roots of sugar beet seemed to be related to the easy availability of nitrogen.


Assuntos
Beta vulgaris , Beta vulgaris/metabolismo , Nitrogênio/metabolismo , Desenvolvimento Vegetal , Solo , Sacarose/metabolismo , Raízes de Plantas/metabolismo
9.
Foods ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238858

RESUMO

The production of animal protein usually leads to higher carbon emissions than that of plant protein. To reduce carbon emissions, the partial replacement of animal protein with plant protein has attracted extensive attention; however, little is known about using plant protein hydrolysates as a substitute. The potential application of 2 h-alcalase hydrolyzed potato protein hydrolysate (PPH) to displace whey protein isolate (WPI) during gel formation was demonstrated in this study. The effect of the ratios (8/5, 9/4, 10/3, 11/2, 12/1, and 13/0) of WPI to PPH on the mechanical properties, microstructure, and digestibility of composite WPI/PPH gels was investigated. Increasing the WPI ratio could improve the storage modulus (G') and loss modulus (G″) of composite gels. The springiness of gels with the WPH/PPH ratio of 10/3 and 8/5 was 0.82 and 0.36 times higher than that of the control (WPH/PPH ratio of 13/0) (p < 0.05). In contrast, the hardness of the control samples was 1.82 and 2.38 times higher than that of gels with the WPH/PPH ratio of 10/3 and 8/5 (p < 0.05). According to the International Organization for Standardization of Dysphagia Diet (IDDSI) testing, the composite gels belonged to food level 4 in the IDDSI framework. This suggested that composite gels could be acceptable to people with swallowing difficulties. Confocal laser scanning microscopy and scanning electron microscopy images illustrated that composite gels with a higher ratio of PPH displayed thicker gel skeletons and porous networks in the matrix. The water-holding capacity and swelling ratio of gels with the WPH/PPH ratio of 8/5 decreased by 12.4% and 40.8% when compared with the control (p < 0.05). Analysis of the swelling rate with the power law model indicated that water diffusion in composite gels belonged to non-Fickian transport. The results of amino acid release suggested that PPH improved the digestion of composite gels during the intestinal stage. The free amino group content of gels with the WPH/PPH ratio of 8/5 increased by 29.5% compared with the control (p < 0.05). Our results suggested that replacing WPI with PPH at the ratio of 8/5 could be the optimal selection for composite gels. The findings indicated that PPH could be used as a substitute for whey protein to develop new products for different consumers. Composite gels could deliver nutrients such as vitamins and minerals to develop snack foods for elders and children.

10.
J Sci Food Agric ; 103(12): 5811-5818, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37092328

RESUMO

BACKGROUND: Potato protein possesses strong potential for application in the food industry due to its outstanding nutritional and functional properties. However, the inevitable industrial processing often brings adverse effects. The use of a polysaccharide and protein complex is a promising way to improve the performance of potato protein. This work aimed to investigate the effects of different physical factors on the potato protein/chitosan (PP/CS) complex system. RESULTS: The addition of NaCl was not conductive to the formation of PP/CS complexes, resulting in significantly decreased peak turbidities from 1.29 to 0.75. The effect of different ions on PP/CS system matched with the Hofmeister series in the following order: Li+ > Control > Na+ > K+ ; SCN- > I- > NO3 - > Br- ≈ Control > Cl- > SO4 2- , among which the salting-in ions (Li+ , Br- , NO3 - , I- and SCN- ) tended to promote the formation of PP/CS complexes. The turbidity increased significantly when the reaction temperature rose to 45 °C and above, and peak turbidity was obtained at lower pH values. The PP/CS system reaction at 45 °C led to the highest whiteness value, and the Maillard reaction could occur when the temperature was above 45 °C. CONCLUSIONS: The results of the present study confirmed that different physical factors led to strong influences on PP/CS complexes, especially when considering the Hofmeister series and the Maillard reaction. These findings could have significant implications for the utilization of potato protein in complex food systems. © 2023 Society of Chemical Industry.


Assuntos
Quitosana , Solanum tuberosum , Quitosana/química , Reação de Maillard , Solanum tuberosum/química , Temperatura , Íons , Cloreto de Sódio
11.
Foods ; 12(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37107469

RESUMO

Hydrocolloids are widely used in food processing because of their texture-forming abilities, which help to preserve the quality of sensitive compounds, e.g., in dried fruit foams, which have recently emerged in healthier alternative snacks. Our aim was to investigate the protective role of maltodextrin in improving the storage stability of fruit foams. This study evaluated the effect of maltodextrin concentrations on the stability of the following quality parameters: anthocyanins, ascorbic acid, color, texture, and sensory perception of dried foamed raspberry pulp during storage. This study compared three concentrations (5%, 15%, and 30% w/w) of maltodextrin in mixtures, evaluating their effect on the stability of these parameters over a 12-week storage period. The foam samples were stored at 37 °C to accelerate chemical reactions under vacuum packaging conditions which excluded oxygen. The addition of 30% maltodextrin to the raspberry pulp blend resulted in the highest retentions in all compounds tested, i.e., 74% for ascorbic acid and 87% for anthocyanins. Color and texture were similarly preserved. Adding 30% maltodextrin to the mixture did not negatively influence the acceptability of sensory perception. Maltodextrin thus represents an effective protective agent for preserving nutritional and sensory qualities for a longer storage period. Hence, using MD together with potato protein was optimal for enhancing the storage stability of fruit foam, which is important for the food industry.

12.
J Food Sci ; 88(4): 1553-1565, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789854

RESUMO

The study aimed to investigate the effect of high intensity ultrasonic (HIU) treatment at different times (0, 10, 20, and 30 min) on the structure and gel properties of water-soluble potato protein isolate (WPPI) and to further investigate the improvement of gel properties of ultrasonicated WPPI (UWPPI) by the addition of egg white protein (EWP). HIU reduced the particle size of WPPI, whose structure became loose and disordered, which improved gelling properties of UWPPI. Fourier transform infrared results indicated that α-helix content decreased, whereas the proportion of irregular curl increased with the increase in ultrasonication time (0-20 min), indicating that the initially ordered structure of UWPPI became disordered. After HIU treatment, the free sulfhydryl groups of UWPPI and surface hydrophobicity decreased and fluorescence intensity increased. These results demonstrated that the HIU loosened the structure of UWPPI, exposing more chromogenic groups while embedding more hydrophilic groups. After thermal induction, UWPPI gel hardness increased and exhibited excellent water holding capacity. After the addition of EWP, rheological properties stabilized, and the hardness of UWPPI-EWP gels increased significantly, forming internally structured protein gels with a tightly ordered structure and increased brightness. Thus, HIU changed the structure and gelling properties of WPPI, and the addition of EWP further enhanced the performance of hybrid protein gels. PRACTICAL APPLICATION: High intensity ultrasonic changed the structure of water-soluble potato protein isolate (WPPI) and improved the properties of WPPI gels. The addition of egg white protein significantly improved the quality of mixed protein gels which showed great potential industrial value.


Assuntos
Solanum tuberosum , Ultrassom , Proteínas do Ovo/química , Géis , Água/química
13.
Foods ; 11(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36429154

RESUMO

Heat-induced composite gel systems consisting of different soybean protein isolate (SPI) and potato protein (PP) mixtures were studied to elucidate their "backbone" and property changes. This was achieved by comparing the ratio of non-network proteins, protein subunit composition, and aggregation of different gel samples. It was revealed that SPI was the "gel network backbone" and PP played the role of "filler" in the SPI-PP composite gel system. Compared with the composite gels at the same ratio, springiness and WHC decrease with PP addition. For hardness, PP addition showed a less linear trend. At the SPI-PP = 2/1 composite gel, hardness was more than doubled, while springiness and WHC did not decrease too much and increased the inter-protein binding. The hydrophobic interactions and electrostatic interactions and hydrogen bonding of the SPI gel system were enhanced. The scanning electron microscopy results showed that the SPI-based gel system was able to form a more compact and compatible gel network. This study demonstrates the use of PP as a potential filler that can effectively improve the gelling properties of SPI, thus providing a theoretical basis for the study of functional plant protein foods.

14.
Foods ; 11(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36230190

RESUMO

Pacific whiting is a primary species utilized for surimi processing in the Pacific Northwest of the US. However, endogenous protease in Pacific whiting surimi deteriorates the quality during slow cooking. The demand for clean-labeled and economically competitive protease inhibitors has been increasing. In the present study, the anti-proteolytic effect of potato protein isolate (PPI), a by-product from the potato starch industry, prepared using 20% ethanol on the endogenous protease activity of Pacific whiting (PW) surimi was investigated. The ohmic heating method was carried out for a better assessment of the anti-proteolytic activity of inhibitors. A factorial design was carried out in which the independent variables were the four types of inhibitors and their concentration (0, 0.5, 1, 2, and 3% w/w) at two heating conditions. The heating condition was used as a blocking factor. All experiments were randomized within each block. The addition of 2% PPI which demonstrated the highest anti-proteolytic activity among five different concentrations significantly increased the breaking force, penetration distance, and water retention ability of PW surimi gel as the endogenous proteases were effectively inhibited when heated ohmically at 60 °C for 30 min prior to heating up to 90 °C. In addition, SDS-PAGE disclosed that PPI successfully retained the intensity of myofibrillar heavy chain (MHC) protein of PW surimi gels even under the condition at which proteases could be activated at 60 °C. The whiteness of gels was not negatively affected by the addition of PPI. Comparing all samples, a denser and more ordered microstructure was obtained when PPI was added. A similar trend was found from the fractal dimension (Df) of the PPI-added gel's microstructure. Therefore, PPI could be an effective and non-allergenic protease inhibitor in PW surimi leading to retaining the integrity of high gel quality.

15.
Foods ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36141054

RESUMO

Potatoes are grown in large quantities and are mainly used as food or animal feed. Potato processing generates a large amount of side streams, which are currently low value by-products of the potato processing industry. The utilization of the potato peel side stream and other potato residues is also becoming increasingly important from a sustainability point of view. Individual constituents of potato peel or complete potato tubers can for instance be used for application in other products such as bio-based food packaging. Prior using constituents for specific applications, their properties and characteristics need to be known and understood. This article extensively reviews the scientific literature about physical, chemical, and biochemical modification of potato constituents. Besides short explanations about the modification techniques, extensive summaries of the results from scientific articles are outlined focusing on the main constituents of potatoes, namely potato starch and potato protein. The effects of the different modification techniques are qualitatively interpreted in tables to obtain a condensed overview about the influence of different modification techniques on the potato constituents. Overall, this article provides an up-to-date and comprehensive overview of the possibilities and implications of modifying potato components for potential further valorization in, e.g., bio-based food packaging.

16.
Nutrients ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745236

RESUMO

The raising consumer demand for plant-derived proteins has led to an increased production of alternative protein ingredients with varying processing histories. In this study, we used a commercially available potato protein ingredient with a nutritionally valuable amino acid profile and high technological functionality to evaluate if the digestibility of a suspension with the same composition is affected by differences in the structure. Four isocaloric (4% protein, w/w) matrices (suspension, gel, foam and heat-set foam) were prepared and their gastrointestinal fate was followed utilizing a semi-dynamic in vitro digestion model. The microstructure was observed by confocal laser scanning microscopy, protein breakdown was tested by electrophoresis and free amino acids after intestinal digestion was estimated using liquid chromatography/triple-quadruple-mass spectrometry (LC-TQMS). The heat-treated samples showed a higher degree of hydrolysis and lower trypsin inhibitory activity than the non-heat-treated samples. An in vitro digestible indispensable amino acid score was calculated based on experimental data, showing a value of 0.9 based on sulfur amino acids/valine as the limiting amino acids. The heated samples also showed a slower gastric emptying rate. The study highlights the effect of the food matrix on the distribution of the peptides created during various stages of gastric emptying.


Assuntos
Digestão , Solanum tuberosum , Aminoácidos/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo
17.
Foods ; 11(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35407004

RESUMO

Fibers of potato protein and polysaccharides were obtained by needleless electrospinning. Mixtures of maltodextrin DE2 (dextrose equivalent) (0.8 g/mL), DE21 (0.1 g/mL), and different concentrations of potato protein (0.05, 0.1, 0.15, and 0.2 g/mL) were used for fiber production. Glycation was performed via the Maillard reaction after thermal treatment (0/6/12/24/48 h, 65 °C, 75% relative humidity). The effects of electrospinning and heating on trypsin inhibitor activity (IA) were studied. The results of the IA assay showed that electrospinning and glycation caused significant differences in IA among blends, heating times, and the interaction of blend and heating time (p < 0.001). The higher the protein content in the fibers, the higher the IA. The lowest IA was found in the mixture with the lowest protein content after 48 h. In other blends, the minimum IAs were found between 6 and 12 h of heating. The determination of the free lysine groups showed a nonsignificant decrease after heating. However, higher free lysine groups per protein (6.3−9.5 g/100 g) were found in unheated fibers than in the potato protein isolate (6.0 ± 0.5 g/100 g). The amide I and amide II regions, detected by the Fourier transform infrared spectra, showed only a slight shift after heating.

18.
Nutrients ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201703

RESUMO

Global protein consumption has been increasing for decades due to changes in demographics and consumer shifts towards higher protein intake to gain health benefits in performance nutrition and appetite regulation. Plant-derived proteins may provide a more environmentally sustainable alternative to animal-derived proteins. This study, therefore, aimed to investigate, for the first time, the acute effects on glycaemic indices, gut hormones, and subjective appetite ratings of two high-quality, plant-derived protein isolates (potato and rice), in comparison to a whey protein isolate in a single-blind, triple-crossover design study with nine male participants (30.8 ± 9.3 yrs). Following a 12 h overnight fast, participants consumed an equal volume of the three isocaloric protein shakes on different days, with at least a one-week washout period. Glycaemic indices and gut hormones were measured at baseline, then at 30, 60, 120, 180 min at each visit. Subjective palatability and appetite ratings were measured using visual analogue scales (VAS) over the 3 h, at each visit. This data showed significant differences in insulin secretion with an increase in whey (+141.8 ± 35.1 pmol/L; p = 0.011) and rice (-64.4 ± 20.9 pmol/L; p = 0.046) at 30 min compared to potato protein. A significantly larger total incremental area under the curve (iAUC) was observed with whey versus potato and rice with p < 0.001 and p = 0.010, respectively. There was no significant difference observed in average appetite perception between the different proteins. In conclusion, this study suggests that both plant-derived proteins had a lower insulinaemic response and improved glucose maintenance compared to whey protein.


Assuntos
Biomarcadores/metabolismo , Glicemia/metabolismo , Ingestão de Alimentos , Oryza/química , Proteínas de Plantas/farmacologia , Solanum tuberosum/química , Proteínas do Soro do Leite/farmacologia , Adulto , Aminoácidos/análise , Apetite , Hormônios/sangue , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Peptídeos/sangue , Saciação , Escala Visual Analógica , Adulto Jovem
19.
Food Chem ; 361: 130090, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023687

RESUMO

Effects of energy-divergent ultrasound (EDU), energy-gathered ultrasound (EGU), and energy-gathered ultrasound-microwave (EGUM) on structure, antioxidant activities, aroma, and sensory attributes of Maillard reaction products (MRPs) from sweet potato protein hydrolysates (SPPH) were investigated. EGU and EGUM markedly enhanced the Maillard reaction (MR) progress. FTIR results revealed significant peptide structure changes in MRPs as compared to their SPPHs counterparts. EGU-MRPs exhibited the highest percentages in lower MW fractions of 200-3,000 Da, and presented a significantly enhanced ORAC value of 92.10 µg TE/mL (p < 0.05). Besides, EGU-MRPs and EGUM-MRPs showed higher content and quality of aroma compounds than other MRPs, and presented increased umami, sweetness, and sourness attributes, but decreased bitterness (p < 0.05). Their stronger umami taste was highly correlated to 1-naphthalenol, dodecanoic acid, <200, 200-500, 500-1,000 and 1,000-3,000 Da. Thus, EGU and EGUM assisted enzymatic hydrolysis coupled with MR might be promising ways to produce natural flavoring with improved antioxidant activities.


Assuntos
Antioxidantes/análise , Enzimas/metabolismo , Ipomoea batatas/química , Odorantes/análise , Hidrolisados de Proteína/análise , Paladar , Ondas Ultrassônicas , Reação de Maillard , Micro-Ondas
20.
Food Res Int ; 140: 109868, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648186

RESUMO

In our previous work, dynamic high-pressure microfluidization (DHPM) treatment was shown to promote the interaction between chitosan (CS) and potato protein isolate (PPI), but the modification mechanism of DHPM treatment (6 k-12 k psi) on PPI and its complex with CS remains to be elucidated. Here, moderate DHPM treatment (≤9k psi) was found to decrease the particle size, increase the surface charge, and improve the solubility of PPI and its emulsifying and foaming properties. The PPI functional properties were further improved by CS addition followed by DHPM treatment. The ultraviolet and fluorescence spectral results showed that DHPM treatment could destroy the PPI molecularstructure, while CS addition could provide a protective mechanism against PPI damage, which was also proved by the surface hydrophobicity. The circular dichroism spectral analysis exhibited that DHPM treatment could convert different types of secondary structures by disrupting the PPI intermolecular hydrogen bonds, while CS addition could promote the formation of hydrogen bonds in the system, which was also demonstrated by infrared spectroscopy. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) results exhibited that DHPM treatment (≤12 k psi) was not sufficient to reduce the PPI molecular mass, while DHPM treatment (6 k-12 k psi) could destroy the structure of CS/PPI complex. The thermodynamic analysis showed that the PPI thermodynamic stability could be improved by DHPM treatment, but decreased by CS addition plus DHPM treatment. These results showed that DHPM treatment has a good potential to modify the PPI and CS/PPI complex.


Assuntos
Quitosana , Solanum tuberosum , Interações Hidrofóbicas e Hidrofílicas , Pressão , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA