RESUMO
Construction dust contributes a significant proportion of airborne particulate matter, affecting the health of its surrounding environment and population. Construction workers are normally exposed to dust at high levels and bear severe health risks. The existing articles concerning the exposure and health impacts of construction dust are limited, but this research field has received more and more attention. This work reviews literature in the field and tries to systematically assess the current research state. Here, we review (1) methods used to monitor or sample construction dust; (2) main characteristics of construction dust, including dust classification, exposed populations, and exposure concentrations; (3) potential health hazards and (4) health risk assessment of construction dust. From existing literature, the exposure concentrations of different types and sources of construction dust are usually the focus of attention, while its particle size distribution and chemical composition are rarely mentioned. The classification and characteristics of populations exposed to construction dust ought to be a key consideration but not clear enough so far. There still lacks in-depth study of health hazards and systematic assessment of risks associated with construction dust. In future, it is valuable to develop utility instruments to precisely monitor construction dust. Besides, control means to reduce the pollution of construction dust deserve more studies. Health hazards of construction dust should be verified by biological experiments. Moreover, emerging algorithm models should be utilized in the risk assessment. The findings will help gain a better understanding of construction dust exposure and associated health risks.
Assuntos
Poeira , Exposição Ocupacional , Humanos , Material Particulado , Poluição Ambiental , Medição de RiscoRESUMO
Pulsed electromagnetic fields (PEMF) delivered by whole-body mats are promoted in many countries for a wide range of therapeutic applications and for enhanced well-being. However, neither the therapeutic efficacy nor the potential health hazards caused by these mats have been systematically evaluated. We conducted a systematic review of trials investigating the therapeutic effects of low-frequency PEMF devices. We were interested in all health outcomes addressed so far in randomized, sham-controlled, double-blind trials. In total, 11 trials were identified. They were focused on osteoarthritis of the knee (3 trials) or the cervical spine (1), fibromyalgia (1), pain perception (2), skin ulcer healing (1), multiple sclerosis-related fatigue (2), or heart rate variability and well-being (1). The sample sizes of the trials ranged from 12 to 71 individuals. The observation period lasted 12 weeks at maximum, and the applied magnetic flux densities ranged from 3.4 to 200 µT. In some trials sporadic positive effects on health were observed. However, independent confirmation of such singular findings was lacking. We conclude that the scientific evidence for therapeutic effects of whole-body PEMF devices is insufficient. Acute adverse effects have not been reported. However, adverse effects occurring after long-term application have not been studied so far. In summary, the therapeutic use of low-frequency whole-body PEMF devices cannot be recommended without more scientific evidence from high-quality, double-blind trials.