Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Neural Netw ; 181: 106760, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39362184

RESUMO

The progression of deep learning and the widespread adoption of sensors have facilitated automatic multi-view fusion (MVF) about the cardiovascular system (CVS) signals. However, prevalent MVF model architecture often amalgamates CVS signals from the same temporal step but different views into a unified representation, disregarding the asynchronous nature of cardiovascular events and the inherent heterogeneity across views, leading to catastrophic view confusion. Efficient training strategies specifically tailored for MVF models to attain comprehensive representations need simultaneous consideration. Crucially, real-world data frequently arrives with incomplete views, an aspect rarely noticed by researchers. Thus, the View-Centric Transformer (VCT) and Multitask Masked Autoencoder (M2AE) are specifically designed to emphasize the centrality of each view and harness unlabeled data to achieve superior fused representations. Additionally, we systematically define the missing-view problem for the first time and introduce prompt techniques to aid pretrained MVF models in flexibly adapting to various missing-view scenarios. Rigorous experiments involving atrial fibrillation detection, blood pressure estimation, and sleep staging-typical health monitoring tasks-demonstrate the remarkable advantage of our method in MVF compared to prevailing methodologies. Notably, the prompt technique requires finetuning <3 % of the entire model's data, substantially fortifying the model's resilience to view missing while circumventing the need for complete retraining. The results demonstrate the effectiveness of our approaches, highlighting their potential for practical applications in cardiovascular health monitoring. Codes and models are released at URL.

2.
Gels ; 10(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39330163

RESUMO

Excessive reservoir water poses significant challenges in the oil and gas industry by diminishing hydrocarbon recovery efficiency and generating environmental and economic complications. Conventional polymer flooding techniques, although beneficial, often prove inadequate under conditions of elevated temperature and salinity, highlighting the need for more resilient materials. In this research, two types of acrylamide-based preformed particle gels (PPGs) were synthesized, as follows: polyelectrolyte and polyampholyte. These PPGs were engineered to improve plugging efficiency and endure extreme reservoir environments. The polyelectrolyte gels were synthesized using acrylamide (AAm) and sodium acrylate (SA), while the polyampholyte gels incorporated AAm, AMPS, and APTAC, with crosslinking achieved through MBAA. The swelling properties, modulated by temperature, salinity, and pH, were evaluated using the Ritger-Peppas and Yavari-Azizian models. The mechanical characteristics and surface morphology of the gels were analyzed using SEM and BET techniques. In sand pack experiments designed to mimic high-permeability reservoirs, the inclusion of 0.5 wt.% of fine PPGs substantially reduced water permeability, outperforming traditional hydrogels. Notably, the polyampholyte PPGs demonstrated superior resilience and efficacy in plugging. However, the experiments were limited by the low test temperature (25 °C) and brine salinity (26.6 g/L). Future investigations will aim to apply these PPGs in high-temperature, fractured carbonate reservoirs.

3.
Micromachines (Basel) ; 15(9)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39337727

RESUMO

To diagnose diabetes early or to maintain stable blood glucose levels in diabetics, blood glucose levels should be frequently checked. However, the only way to check blood glucose levels regularly is to use invasive methods, such as pricking the fingertip or using a minimally invasive patch. These invasive methods pose several problems, including being painful and potentially causing secondary infections. This study focuses on noninvasively measuring glycated hemoglobin (HbA1c) using PPG signals. In particular, the study relates to a method and a hardware design technology for removing noise that may be present in a PPG signal due to skin contact with a noninvasive HbA1c measurement device. The proposed HbA1c measurement device consists of the first sensor (PPG sensor) module including an optical barrier and the second sensor (cylindrical sensor) module for removing the skin effect. We have developed a Monte Carlo method to implement accurate, noninvasive HbA1c measurement by considering different skin properties among different subjects. Implementing this model in wearable devices will allow end users to not only monitor their glycated hemoglobin levels but also control diabetes with higher accuracy without needing any blood samples. This will be a groundbreaking advancement in modern wearable medical devices.

4.
Sci Rep ; 14(1): 22368, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333140

RESUMO

Pulse rate (PR) and respiratory rate (RR) are two of the most important vital signs. Monitoring them would benefit from easy-to-use technologies. Hence, wearable devices would, in principle, be ideal candidates for such systems. The neck, although highly susceptible to artifacts, presents an attractive location for a diverse pool of physiological biomarkers monitoring purposes such as airflow sensing in a non-obstructive manner. This paper presents a methodology for PR and RR estimation using photoplethysmography (PPG) and accelerometry (Acc) sensors placed on the neck. Neck PPG and Acc signals were recorded from 22 healthy participants for RR estimation, where the resting subjects performed guided breathing following a visual metronome. Neck PPG signals were obtained from 16 healthy participants who breathed through an altitude generator machine in order to acquire a wider range of PR readings while at rest. The proposed methodology was able to provide rate estimates via a combination of recursive FFT-based dominance scoring coupled with an exponentially weighted moving average (EWMA)-driven aggregation scheme. The recursion aimed at bypassing sudden intra-window amplitude deviations caused by momentary artifacts, while the EWMA-based aggregation was utilized for handling inter-window artifact-induced deviations. To further improve estimation stability and confidence, estimates were calculated in the form of rate bands taking into account the relevant clinically acceptable error margins, and results when considering rate values and rate bands are presented and discussed. The framework was able to achieve an overall pulse rate value accuracy of 93.67 ± 7.64 % within the clinically acceptable ± 5 BPM with reference to the gold-standard reference devices while providing an overall respiratory rate value accuracy within the clinically appropriate ± 3 BrPM of 94.94 ± 3.56 % with reference to the guiding visual metronome, and 88.4 ± 7.63 % with respect to the gold-standard reference device. The proposed methodology achieves acceptable PR and RR estimation capabilities, even when signals are acquired from an unusual location such as the neck. This work introduces novel ideas that can lead to the development of medical device outputs for PR and RR monitoring, especially capitalizing on the advantages of the neck as a multi-modal physiological monitoring location.


Assuntos
Pescoço , Fotopletismografia , Taxa Respiratória , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Fotopletismografia/métodos , Fotopletismografia/instrumentação , Pescoço/fisiologia , Masculino , Feminino , Adulto , Sinais Vitais , Frequência Cardíaca/fisiologia , Acelerometria/instrumentação , Acelerometria/métodos , Adulto Jovem , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Algoritmos
5.
Eur Heart J Digit Health ; 5(5): 551-562, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39318688

RESUMO

Aims: Urbanization is related to non-communicable diseases such as congestive heart failure (CHF). Understanding the influence of diverse living environments on physiological variables such as heart rate variability (HRV) in patients with chronic cardiac disease may contribute to more effective lifestyle advice and telerehabilitation strategies. This study explores how machine learning (ML) models can predict HRV metrics, which measure autonomic nervous system responses to environmental attributes in uncontrolled real-world settings. The goal is to validate whether this approach can ascertain and quantify the connection between environmental attributes and cardiac autonomic response in patients with CHF. Methods and results: A total of 20 participants (10 healthy individuals and 10 patients with CHF) wore smartwatches for 3 weeks, recording activities, locations, and heart rate (HR). Environmental attributes were extracted from Google Street View images. Machine learning models were trained and tested on the data to predict HRV metrics. The models were evaluated using Spearman's correlation, root mean square error, prediction intervals, and Bland-Altman analysis. Machine learning models predicted HRV metrics related to vagal activity well (R > 0.8 for HR; 0.8 > R > 0.5 for the root mean square of successive interbeat interval differences and the Poincaré plot standard deviation perpendicular to the line of identity; 0.5 > R > 0.4 for the high frequency power and the ratio of the absolute low- and high frequency power induced by environmental attributes. However, they struggled with metrics related to overall autonomic activity, due to the complex balance between sympathetic and parasympathetic modulation. Conclusion: This study highlights the potential of ML-based models to discern vagal dynamics influenced by living environments in healthy individuals and patients diagnosed with CHF. Ultimately, this strategy could offer rehabilitation and tailored lifestyle advice, leading to improved prognosis and enhanced overall patient well-being in CHF.

6.
Phys Eng Sci Med ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287773

RESUMO

Breathing conditions affect a wide range of people, including those with respiratory issues like asthma and sleep apnea. Smartwatches with photoplethysmogram (PPG) sensors can monitor breathing. However, current methods have limitations due to manual parameter tuning and pre-defined features. To address this challenge, we propose the PPG2RespNet deep-learning framework. It draws inspiration from the UNet and UNet + + models. It uses three publicly available PPG datasets (VORTAL, BIDMC, Capnobase) to autonomously and efficiently extract respiratory signals. The datasets contain PPG data from different groups, such as intensive care unit patients, pediatric patients, and healthy subjects. Unlike conventional U-Net architectures, PPG2RespNet introduces layered skip connections, establishing hierarchical and dense connections for robust signal extraction. The bottleneck layer of the model is also modified to enhance the extraction of latent features. To evaluate PPG2RespNet's performance, we assessed its ability to reconstruct respiratory signals and estimate respiration rates. The model outperformed other models in signal-to-signal synthesis, achieving exceptional Pearson correlation coefficients (PCCs) with ground truth respiratory signals: 0.94 for BIDMC, 0.95 for VORTAL, and 0.96 for Capnobase. With mean absolute errors (MAE) of 0.69, 0.58, and 0.11 for the respective datasets, the model exhibited remarkable precision in estimating respiration rates. We used regression and Bland-Altman plots to analyze the predictions of the model in comparison to the ground truth. PPG2RespNet can thus obtain high-quality respiratory signals non-invasively, making it a valuable tool for calculating respiration rates.

7.
Sci Rep ; 14(1): 19896, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191907

RESUMO

Preterm birth (PTB) remains a global health concern, impacting neonatal mortality and lifelong health consequences. Traditional methods for estimating PTB rely on electronic health records or biomedical signals, limited to short-term assessments in clinical settings. Recent studies have leveraged wearable technologies for in-home maternal health monitoring, offering continuous assessment of maternal autonomic nervous system (ANS) activity and facilitating the exploration of PTB risk. In this paper, we conduct a longitudinal study to assess the risk of PTB by examining maternal ANS activity through heart rate (HR) and heart rate variability (HRV). To achieve this, we collect long-term raw photoplethysmogram (PPG) signals from 58 pregnant women (including seven preterm cases) from gestational weeks 12-15 to three months post-delivery using smartwatches in daily life settings. We employ a PPG processing pipeline to accurately extract HR and HRV, and an autoencoder machine learning model with SHAP analysis to generate explainable abnormality scores indicative of PTB risk. Our results reveal distinctive patterns in PTB abnormality scores during the second pregnancy trimester, indicating the potential for early PTB risk estimation. Moreover, we find that HR, average of interbeat intervals (AVNN), SD1SD2 ratio, and standard deviation of interbeat intervals (SDNN) emerge as significant PTB indicators.


Assuntos
Frequência Cardíaca , Nascimento Prematuro , Humanos , Feminino , Frequência Cardíaca/fisiologia , Gravidez , Nascimento Prematuro/fisiopatologia , Estudos Longitudinais , Adulto , Fotopletismografia/métodos , Medição de Risco/métodos , Sistema Nervoso Autônomo/fisiopatologia , Aprendizado de Máquina , Recém-Nascido , Monitorização Fisiológica/métodos
8.
J Clin Sleep Med ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132687

RESUMO

STUDY OBJECTIVES: Since 2019, the FDA has cleared nine novel obstructive sleep apnea (OSA)-detecting wearables for home sleep apnea testing, with many now commercially available for sleep clinicians to integrate into their clinical practices. To help clinicians comprehend these devices and their functionalities, we meticulously reviewed their operating mechanisms, sensors, algorithms, data output, and related performance evaluation literature. METHODS: We collected information from PubMed, FDA clearance documents, ClinicalTrial.gov, and web sources, with direct industry input whenever feasible. RESULTS: In this "device-centered" review, we broadly categorized these wearables into two main groups: those that primarily harness Photoplethysmography (PPG) data and those that do not. The former include the peripheral arterial tonometry (PAT)-based devices. The latter was further broken down into two key subgroups: acoustic-based and respiratory effort-based devices. We provided a performance evaluation literature review and objectively compared device-derived metrics and specifications pertinent to sleep clinicians. Detailed demographics of study populations, exclusion criteria, and pivotal statistical analyses of the key validation studies are summarized. CONCLUSIONS: In the foreseeable future, these novel OSA-detecting wearables may emerge as primary diagnostic tools for patients at risk for moderate-to-severe OSA without significant comorbidities. While more devices are anticipated to join this category, there remains a critical need for cross-device comparison studies as well as independent performance evaluation and outcome research in diverse populations. Now is the moment for sleep clinicians to immerse themselves in understanding these emerging tools to ensure our patient-centered care is improved through the appropriate implementation and utilization of these novel sleep technologies.

9.
IEEE Open J Eng Med Biol ; 5: 637-649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184965

RESUMO

Objective: A patient-independent approach for continuous estimation of vital signs using robust spectro-temporal features derived from only photoplethysmogram (PPG) signal. Methods: In the pre-processing stage, we remove baseline shifts and artifacts of the PPG signal using Incremental Merge Segmentation with adaptive thresholding. From the cleaned PPG, we extract multiple parameters independent of individual patient PPG morphology for both Respiration Rate (RR) and Blood Pressure (BP). In addition, we derived a set of novel spectral and statistical features strongly correlated to BP. We proposed robust correlation-based feature selection methods for accurate RR estimates. For fewer computations and accurate measurements of BP, the most significant features are selected using correlation and mutual information measures in the feature engineering part. Finally, RR and BP are estimated using breath counting and a neural network regression model, respectively. Results: The proposed approach outperforms the current state-of-the-art in both RR and BP. The RR algorithm results in mean absolute errors (median, 25th-75th percentiles) of 0.4 (0.1-0.7) for CapnoBase dataset and 0.5(0.3-2.8) for BIDMC dataset without discarding any data window. Similarly, BP approach has been validated on a large dataset derived from MIMIC-II ([Formula: see text]1700 records) which has errors (mean absolute, standard deviation) of 5.0(6.3) and 3.0(4.0) for systolic and diastolic BP, respectively. The results meet the American Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) Class A criteria. Conclusion: By using robust features and feature selection methods, we alleviated patient dependency to have reliable estimates of vitals.

10.
Proc Inst Mech Eng H ; 238(8-9): 928-935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39127880

RESUMO

The photoplethysmographic (PPG) signal of the finger is being used to create embedded devices that estimate physiological variables. This project outlines an innovative method for developing a synthetic PPG generator that produces both actual reference digital signals and their equivalent analog signals using open-source technology. A series of PPG profiles is synthesized using three variant Gaussian functions. A low-frequency trend induced by respiratory frequency and background noise are then added. To generate a diverse range of continuously variable PPG profiles within specified boundaries and customizable levels of interference, all parameters undergo random fluctuations on a cycle-by-cycle basis, as per user-defined constraints. The generated signal is then converted into its equivalent analog form through the use of an RC filter that low-frequency filters a Pulse-Width Modulation square wave that is modulated directly by the generated signal. The software returns different PPG profiles and allows the signal comparison before vs after the addition of different-intensity modulated respiratory trends and background noise. The digital signal is faithfully converted into an equivalent analog voltage signal capable of reproducing not only the waveform profile but also the respiratory trend and various levels of noise.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Fotopletismografia/instrumentação , Humanos
11.
JMIR Form Res ; 8: e53977, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110968

RESUMO

BACKGROUND: Wearable physiological monitoring devices are promising tools for remote monitoring and early detection of potential health changes of interest. The widespread adoption of such an approach across communities and over long periods of time will require an automated data platform for collecting, processing, and analyzing relevant health information. OBJECTIVE: In this study, we explore prospective monitoring of individual health through an automated data collection, metrics extraction, and health anomaly analysis pipeline in free-living conditions over a continuous monitoring period of several months with a focus on viral respiratory infections, such as influenza or COVID-19. METHODS: A total of 59 participants provided smartwatch data and health symptom and illness reports daily over an 8-month window. Physiological and activity data from photoplethysmography sensors, including high-resolution interbeat interval (IBI) and step counts, were uploaded directly from Garmin Fenix 6 smartwatches and processed automatically in the cloud using a stand-alone, open-source analytical engine. Health risk scores were computed based on a deviation in heart rate and heart rate variability metrics from each individual's activity-matched baseline values, and scores exceeding a predefined threshold were checked for corresponding symptoms or illness reports. Conversely, reports of viral respiratory illnesses in health survey responses were also checked for corresponding changes in health risk scores to qualitatively assess the risk score as an indicator of acute respiratory health anomalies. RESULTS: The median average percentage of sensor data provided per day indicating smartwatch wear compliance was 70%, and survey responses indicating health reporting compliance was 46%. A total of 29 elevated health risk scores were detected, of which 12 (41%) had concurrent survey data and indicated a health symptom or illness. A total of 21 influenza or COVID-19 illnesses were reported by study participants; 9 (43%) of these reports had concurrent smartwatch data, of which 6 (67%) had an increase in health risk score. CONCLUSIONS: We demonstrate a protocol for data collection, extraction of heart rate and heart rate variability metrics, and prospective analysis that is compatible with near real-time health assessment using wearable sensors for continuous monitoring. The modular platform for data collection and analysis allows for a choice of different wearable sensors and algorithms. Here, we demonstrate its implementation in the collection of high-fidelity IBI data from Garmin Fenix 6 smartwatches worn by individuals in free-living conditions, and the prospective, near real-time analysis of the data, culminating in the calculation of health risk scores. To our knowledge, this study demonstrates for the first time the feasibility of measuring high-resolution heart IBI and step count using smartwatches in near real time for respiratory illness detection over a long-term monitoring period in free-living conditions.

12.
Sensors (Basel) ; 24(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39124087

RESUMO

Transcatheter aortic valve implantation (TAVI) was initially developed for adult patients, but there is a growing interest to expand this procedure to younger individuals with longer life expectancies. However, the gradual degradation of biological valve leaflets in transcatheter heart valves (THV) presents significant challenges for this extension. This study aimed to establish a multiphysics computational framework to analyze structural and flow measurements of TAVI and evaluate the integration of optical fiber and photoplethysmography (PPG) sensors for monitoring valve function. A two-way fluid-solid interaction (FSI) analysis was performed on an idealized aortic vessel before and after the virtual deployment of the SAPIEN 3 Ultra (S3) THV. Subsequently, an analytical analysis was conducted to estimate the PPG signal using computational flow predictions and to analyze the effect of different pressure gradients and distances between PPG sensors. Circumferential strain estimates from the embedded optical fiber in the FSI model were highest in the sinus of Valsalva; however, the optimal fiber positioning was found to be distal to the sino-tubular junction to minimize bending effects. The findings also demonstrated that positioning PPG sensors both upstream and downstream of the bioprosthesis can be used to effectively assess the pressure gradient across the valve. We concluded that computational modeling allows sensor design to quantify vessel wall strain and pressure gradients across valve leaflets, with the ultimate goal of developing low-cost monitoring systems for detecting valve deterioration.


Assuntos
Próteses Valvulares Cardíacas , Humanos , Fotopletismografia/métodos , Valva Aórtica/fisiologia , Valva Aórtica/cirurgia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Substituição da Valva Aórtica Transcateter , Hemodinâmica/fisiologia , Fibras Ópticas
13.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000876

RESUMO

This study presents an integrated analog front-end (AFE) tailored for photoplethysmography (PPG) sensing. The AFE module introduces a novel transimpedance amplifier (TIA) that incorporates capacitive feedback techniques alongside common drain feedback (CDF) TIA. The unique TIA topology achieves both high gain and high sensitivity while maintaining low power consumption. The resultant PPG sensor module demonstrates impressive specifications, including an input noise current of 4.81 pA/sqrt Hz, a transimpedance gain of 18.43 MΩ, and a power consumption of 68 µW. Furthermore, the sensory system integrates an LED driver featuring automatic light control (ALC), which dynamically adjusts the LED power based on the strength of the received signal. Employing 0.35 µm CMOS technology, the AFE implementation occupies a compact footprint of 1.98 mm × 2.475 mm.

14.
Physiol Meas ; 45(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39048103

RESUMO

Objective. Physiological data are often low quality and thereby compromises the effectiveness of related health monitoring. The primary goal of this study is to develop a robust foundation model that can effectively handle low-quality issue in physiological data.Approach. We introduce SiamQuality, a self-supervised learning approach using convolutional neural networks (CNNs) as the backbone. SiamQuality learns to generate similar representations for both high and low quality photoplethysmography (PPG) signals that originate from similar physiological states. We leveraged a substantial dataset of PPG signals from hospitalized intensive care patients, comprised of over 36 million 30 s PPG pairs.Main results. After pre-training the SiamQuality model, it was fine-tuned and tested on six PPG downstream tasks focusing on cardiovascular monitoring. Notably, in tasks such as respiratory rate estimation and atrial fibrillation detection, the model's performance exceeded the state-of-the-art by 75% and 5%, respectively. The results highlight the effectiveness of our model across all evaluated tasks, demonstrating significant improvements, especially in applications for heart monitoring on wearable devices.Significance. This study underscores the potential of CNNs as a robust backbone for foundation models tailored to physiological data, emphasizing their capability to maintain performance despite variations in data quality. The success of the SiamQuality model in handling real-world, variable-quality data opens new avenues for the development of more reliable and efficient healthcare monitoring technologies.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Fotopletismografia/métodos , Humanos , Redes Neurais de Computação
15.
Endosc Ultrasound ; 13(2): 89-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947750

RESUMO

Background and Objectives: EUS-guided portal pressure gradient (PPG) is a novel technique that permits a true, direct measure of portal vein pressure and hepatic vein pressure. This article details our experience and lessons learned from 20 consecutive outpatient EUS-PPG procedures performed at a single center, along with simultaneous EUS-guided liver biopsy, variceal screening, and variceal banding. Methods: Data on the first 20 patients who underwent EUS-PPG at a single center were retrospectively viewed and analyzed. The effects of various liver diseases or other patient-related factors on the clinical and technical success of EUS-PPG measurements, as well as EUS-guided liver biopsy (EUS-LB), were evaluated. During the procedure, if esophageal varices were encountered, they were assessed, and if felt to be clinically indicated, endoscopic variceal ligation was performed. Results: The 20 patients included 10 male and 10 female patients. All procedures were technically successful. In all patients, the portal vein and hepatic veins could be easily identified. One adverse event of bleeding occurred during the EUS-PPG measuring procedure. All 20 EUS-LBs were technically successful and yielded adequate samples for histological evaluations, with an average of 25 complete portal tracts per sample. Among patients with esophageal varices, 40% of patients underwent banding. The mean EUS-PPG among 5 patients with esophageal varices was 11.6 mm Hg, compared with 3.2 mm Hg among 15 patients without esophageal varices. Conclusion: This study demonstrates that EUS-PPG is a novel, safe, reproducible, and effective technique. Also, the fact that EUS-PPG, EUS-LB, variceal screening, and variceal banding could be performed in 1 session and on an outpatient basis speaks to the growing relevance and impact of the nascent field of endohepatology.

16.
Phys Eng Sci Med ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080206

RESUMO

Photoplethysmography, a widely embraced tool for non-invasive blood pressure (BP) monitoring, has demonstrated potential in BP prediction, especially when machine learning techniques are involved. However, predictions with a singular model often fall short in terms of accuracy. In order to counter this issue, we propose an innovative ensemble model that utilizes Light Gradient Boosting Machine (LightGBM) as the base estimator for predicting systolic and diastolic BP. This study included 115 women and 104 men, with experimental results indicating mean absolute errors of 5.63 mmHg and 9.36 mmHg for diastolic and systolic BP, in line with level B and C standards set by the British Hypertension Society. Additionally, our research confronts data imbalance in medical research which can detrimentally affect classification. Here we demonstrate an effective use for the Synthetic Minority Over-sampling Technique (SMOTE) with three nearest neighbors for handling moderate imbalanced datasets. The application of this method outperformed other methods in the field, achieving an F1 score of 81.6% and an AUC value of 0.895, emphasizing the potential value of SMOTE for addressing imbalanced datasets in medical research.

17.
Front Psychiatry ; 15: 1371946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881544

RESUMO

Background: Elucidating the association between heart rate variability (HRV) metrics obtained through non-invasive methods and mental health symptoms could provide an accessible approach to mental health monitoring. This study explores the correlation between HRV, estimated using photoplethysmography (PPG) signals, and self-reported symptoms of depression and anxiety. Methods: A 4-week longitudinal study was conducted among 47 participants. Time-domain and frequency-domain HRV metrics were derived from PPG signals collected via smartwatches. Mental health symptoms were evaluated using the Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7) at baseline, week 2, and week 4. Results: Among the investigated HRV metrics, RMSSD, SDNN, SDSD, LF, and the LF/HF ratio were significantly associated with the PHQ-9 score, although the number of significant correlations was relatively small. Furthermore, only SDNN, SDSD and LF showed significant correlations with the GAD-7 score. All HRV metrics showed negative correlations with self-reported clinical symptoms. Conclusions: Our findings indicate the potential of PPG-derived HRV metrics in monitoring mental health, thereby providing a foundation for further research. Notably, parasympathetically biased HRV metrics showed weaker correlations with depression and anxiety scores. Future studies should validate these findings in clinically diagnosed patients.

18.
J Pain Symptom Manage ; 68(3): e194-e205, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851545

RESUMO

CONTEXT: Cancer pain is multidimensional and management should be individualized to patient goals. The current standard for pain goal assessment is the personal pain goal (PPG), a numeric rating for tolerable pain intensity. However, the PPG may not accurately capture a personally meaningful goal for tailoring pain management. OBJECTIVES: Identify how pain goals are used in cancer pain management and types of goals researched. METHODS: CINAHL, PsychInfo, and PubMed databases and manual searching were used to locate research or scholarship about cancer pain goals. Authors reviewed titles, abstracts and full text to agree on the final sample. RESULTS: Sixteen articles met inclusion criteria. Study designs included: quality improvement project (1), concept analysis (1), qualitative methods (5), quantitative methods (8), and mixed methods (1). Findings included: goal setting as a key attribute of pain management; achieving personal goals as the outcome of pain management work; qualitative themes discussed personal goals related to pain management; developing a patient pain management resource including a SMART goal; using motivational interviewing to set functional pain goals; PPG assessment was feasible; and achieving PPG equated to having controlled pain when compared to the clinically important difference measure used in research (≥30%). Quantitative studies reported on PPGs only. CONCLUSION: Currently, assessments for cancer pain goals do not include function, activities, moods, medication effects, or safety that patients wish to achieve as a pain management outcome. Development and testing of multidimensional patient pain goals assessments is warranted so that goals can be consistently assessed, documented, and personally meaningful.


Assuntos
Dor do Câncer , Objetivos , Manejo da Dor , Humanos , Manejo da Dor/métodos , Dor do Câncer/terapia , Medição da Dor
19.
Comput Methods Programs Biomed ; 254: 108283, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901273

RESUMO

BACKGROUND AND OBJECTIVE: Detection of the dicrotic notch (DN) within a cardiac cycle is essential for assessment of cardiac output, calculation of pulse wave velocity, estimation of left ventricular ejection time, and supporting feature-based machine learning models for noninvasive blood pressure estimation, and hypotension, or hypertension prediction. In this study, we present a new algorithm based on the iterative envelope mean (IEM) method to detect automatically the DN in arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms. METHODS: The algorithm was evaluated on both ABP and PPG waveforms from a large perioperative dataset (MLORD dataset) comprising 17,327 patients. The analysis involved a total of 1,171,288 cardiac cycles for ABP waveforms and 3,424,975 cardiac cycles for PPG waveforms. To evaluate the algorithm's performance, the systolic phase duration (SPD) was employed, which represents the duration from the onset of the systolic phase to the DN in the cardiac cycle. Correlation plots and regression analysis were used to compare the algorithm against marked DN detection, while box plots and Bland-Altman plots were used to compare its performance with both marked DN detection and an established DN detection technique (second derivative). The marking of the DN temporal location was carried out by an experienced researcher using the help of the 'find_peaks' function from the scipy Python package, serving as a reference for the evaluation. The marking was visually validated by both an engineer and an anesthesiologist. The robustness of the algorithm was evaluated as the DN was made less visually distinct across signal-to-noise ratios (SNRs) ranging from -30 dB to -5 dB in both ABP and PPG waveforms. RESULTS: The correlation between SPD estimated by the algorithm and that marked by the researcher is strong for both ABP (R2(87,343) =0.99, p<.001) and PPG (R2(86,764) =0.98, p<.001) waveforms. The algorithm had a lower mean error of DN detection (s): 0.0047 (0.0029) for ABP waveforms and 0.0046 (0.0029) for PPG waveforms, compared to 0.0693 (0.0770) for ABP and 0.0968 (0.0909) for PPG waveforms for the established 2nd derivative method. The algorithm has high rate of detectability of DN detection for SNR of >= -9 dB for ABP waveforms and >= -12 dB for PPG waveforms indicating robust performance in detecting the DN when it is less visibly distinct. CONCLUSION: Our proposed IEM- based algorithm can detect DN in both ABP and PPG waveforms with low computational cost, even in cases where it is not distinctly defined within a cardiac cycle of the waveform ('DN-less signals'). The algorithm can potentially serve as a valuable, fast, and reliable tool for extracting features from ABP and PPG waveforms. It can be especially beneficial in medical applications where DN-based features, such as SPD, diastolic phase duration, and DN amplitude, play a significant role.


Assuntos
Algoritmos , Fotopletismografia , Fotopletismografia/métodos , Humanos , Pressão Arterial , Determinação da Pressão Arterial/métodos , Análise de Onda de Pulso/métodos , Processamento de Sinais Assistido por Computador
20.
Psychiatry Res ; 337: 115951, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735240

RESUMO

Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.


Assuntos
Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Serotonina , Isolamento Social , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Serotonina/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Camundongos Endogâmicos C57BL , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Glicemia/metabolismo , Glicemia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA